Article Text

Download PDFPDF
Original article
Hypolipidaemia among patients with PMM2-CDG is associated with low circulating PCSK9 levels: a case report followed by observational and experimental studies

Abstract

Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are novel therapeutics for reducing low-density lipoprotein cholesterol (LDLc). While serious side-effects have not been observed in short-term clinical trials, there remain concerns that long-term PCSK9 inhibition may cause neurocognitive side-effects.

Methods and results An adult male with childhood-onset global developmental delay, cerebellar atrophy and severe hypolipidaemia underwent extensive biochemical and genetic investigations. Initial testing revealed low circulating PCSK9 levels and a common loss-of-function PCSK9 polymorphism, but these findings did not fully account for severe hypolipidaemia. Whole-exome sequencing was subsequently performed and identified two pathogenic phosphomannose mutase 2 (PMM2) variants (p.Arg141His and p.Pro69Ser) known to cause PMM2-associated congenital disorder of glycosylation (PMM2-CDG). A diagnosis of PMM2-CDG was consistent with the proband’s neurological symptoms and severe hypolipidaemia. Given that PMM2-CDG is characterised by defective protein N-glycosylation and that PCSK9 is a negative regulator of LDLc, we postulated that loss of PCSK9 N-glycosylation mediates hypolipidaemia among patients with PMM2-CDG. First, in an independent cohort of patients with PMM2-CDG (N=8), we verified that circulating PCSK9 levels were significantly lower in patients than controls (p=0.0006). Second, we conducted in vitro experiments in hepatocyte-derived cells to evaluate the effects of PCSK9 N-glycosylation loss on LDL receptor (LDLR) activity. Experimental results suggest that defective PCSK9 N-glycosylation reduces the ability of circulating PCSK9 to degrade LDLR.

Conclusion Life-long exposure to genetically lower PCSK9 per se is unlikely to cause neurocognitive impairment. Both observational and experimental findings suggest that hypolipidaemia in PMM2-CDG may be partially mediated by loss of PCSK9 N-glycosylation and/or its regulators.

  • PCSK9
  • neurocognitive side-effects
  • LDL cholesterol
  • PMM2
  • congenital disorder of glycosylation

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.