Article Text

Download PDFPDF
Contribution of spurious transcription to intellectual disability disorders


During the development of multicellular organisms, chromatin-modifying enzymes orchestrate the establishment of gene expression programmes that characterise each differentiated cell type. These enzymes also contribute to the maintenance of cell type-specific transcription profiles throughout life. But what happens when epigenomic regulation goes awry? Genomic screens in experimental models of intellectual disability disorders (IDDs) caused by mutations in epigenetic machinery-encoding genes have shown that transcriptional dysregulation constitutes a hallmark of these conditions. Here, we underscore the connections between a subset of chromatin-linked IDDs and spurious transcription in brain cells. We also propose that aberrant gene expression in neurons, including both the ectopic transcription of non-neuronal genes and the activation of cryptic promoters, may importantly contribute to the pathoaetiology of these disorders.

  • intellectual disability
  • histone posttranslational modification
  • DNA methylation
  • gene silencing
  • cryptic promoters
  • ectopic expression

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.