Article Text
Abstract
Respiratory diseases, which are leading causes of mortality and morbidity in the world, are dysfunctions of the nasopharynx, the trachea, the bronchus, the lung and the pleural cavity. Symptoms of chronic respiratory diseases, such as cough, sneezing and difficulty breathing, may seriously affect the productivity, sleep quality and physical and mental well-being of patients, and patients with acute respiratory diseases may have difficulty breathing, anoxia and even life-threatening respiratory failure. Respiratory diseases are generally heterogeneous, with multifaceted causes including smoking, ageing, air pollution, infection and gene mutations. Clinically, a single pulmonary disease can exhibit more than one phenotype or coexist with multiple organ disorders. To correct abnormal function or repair injured respiratory tissues, one of the most promising techniques is to correct mutated genes by gene editing, as some gene mutations have been clearly demonstrated to be associated with genetic or heterogeneous respiratory diseases. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) systems are three innovative gene editing technologies developed recently. In this short review, we have summarised the structure and operating principles of the ZFNs, TALENs and CRISPR/Cas9 systems and their preclinical and clinical applications in respiratory diseases.
- gene editing
- ZFN
- TALEN
- CRISPR/Cas9
- respiratory diseases
Statistics from Altmetric.com
Footnotes
Contributors YB drafted the manuscript. YL, ZS, YM, CR and RZ revised the manuscript. HLJ directed and approved the manuscript.
Funding This work was supported by the American Heart Association (AHA 16GRNT30780002) and the National Institute of Health (NIH HL134828).
Competing interests None declared.
Provenance and peer review Not commissioned; externally peer reviewed.