Article Text
Abstract
Objective Hallux valgus (HV) affects ∼36% of Caucasian adults. Although considered highly heritable, the underlying genetic determinants are unclear. We conducted the first genome-wide association study (GWAS) aimed to identify genetic variants associated with HV.
Methods HV was assessed in three Caucasian cohorts (n=2263, n=915 and n=1231 participants, respectively). In each cohort, a GWAS was conducted using 2.5 M imputed SNPs. Mixed-effect regression with the additive genetic model adjusted for age, sex, weight and within-family correlations was used for both sex-specific and combined analyses. To combine GWAS results across cohorts, fixed-effect inverse-variance meta-analyses were used. Following meta-analyses, top-associated findings were also examined in an African American cohort (n=327).
Results The proportion of HV variance explained by genome-wide genotyped SNPs was 50% in men and 48% in women. A higher proportion of genetic determinants of HV were sex specific. The most significantly associated SNP in men was rs9675316 located on chr17q23-a24 near the AXIN2 gene (p=0.000000546×10−7); the most significantly associated SNP in women was rs7996797 located on chr13q14.1-q14.2 near the ESD gene (p=0.000000721×10−7). Genome-wide significant SNP-by-sex interaction was found for SNP rs1563374 located on chr11p15.1 near the MRGPRX3 gene (interaction p value =0.0000000041×10−9). The association signals diminished when combining men and women.
Conclusions The findings suggest that the potential pathophysiological mechanisms of HV are complex and strongly underlined by sex-specific interactions. The identified genetic variants imply contribution of biological pathways observed in osteoarthritis as well as new pathways, influencing skeletal development and inflammation.
- hallux valgus
- GWAS
- genetic variants
- candidate genes