Article Text
Abstract
We report the results of the first major study of applying quantitative fluorescence polymerase chain reaction (QF-PCR) assays for the detection of major chromosome numerical disorders. The QF-PCR tests were performed on a total of 247 chorionic villus samples, which were analysed blind, without any knowledge of the results obtained using conventional cytogenetic analysis.
The aims of this investigation were to evaluate the detection power and accuracy of this approach by testing a large number of fetal samples and to assess the diagnostic value of each of the chromosome specific small tandem repeat (STR) markers used. In addition, we introduced three more markers specific for chromosomes 13, 18, and X to allow an accurate analysis of samples homozygous for a particular STR. Fluorescent labelled primers were used to amplify 12 STRs specific for chromosomes 21, 18, 13, X, and the amylogenin-like DNA sequence AMXY, expressed on the X and Y chromosomes.
In this blind study of 247 fetal samples, 222 were correctly diagnosed by QF-PCR as normal for each of the five chromosomes investigated; 20 were diagnosed by QF-PCR as trisomic for chromosomes 21, 18, or 13, in agreement with the cytogenetic tests. Only one false negative result was observed, probably owing to the mishandling of the sample, which had been transferred through three laboratories before being analysed by QF-PCR. The 247 samples also included four cases of mosaicism or translocation; one case of mosaic trisomy 21 was detected by QF-PCR and the other cases were not identified by QF-PCR.
The results of this investigation provide clear evidence that the QF-PCR assays are powerful adjuncts to conventional cytogenetic techniques and can be applied for the rapid and accurate prenatal diagnosis of the most frequent aneuploidies.
- prenatal diagnosis
- aneuploidies
- quantitative fluorescence PCR