Article Text

Download PDFPDF
A new dosage test for subtelomeric 4;10 translocations improves conventional diagnosis of facioscapulohumeral muscular dystrophy (FSHD)

Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is caused by the size reduction of a polymorphic repeat array on 4q35. Probe p13E-11 recognises this chromosomal rearrangement and is generally used for diagnosis. However, diagnosis of FSHD is complicated by three factors. First, the probe cross hybridises to a highly homologous repeat array locus on chromosome 10q26. Second, although aBlnI polymorphism allows discrimination between the repeat units on chromosomes 4 and 10 and greatly facilitates FSHD diagnosis, the occurrence of translocations between chromosomes 4 and 10 further complicates accurate FSHD diagnosis. Third, the recent identification of deletions of p13E-11 in both control and FSHD populations is an additional complicating factor. Although pulsed field gel electrophoresis is very useful and sometimes necessary to detect these rearrangements, this technique is not operational in most FSHD diagnostic laboratories. Moreover, repeat arrays >200 kb are often difficult to detect and can falsely suggest a deletion of p13E-11. Therefore, we have developed an easy and reliable Southern blotting method to identify exchanges between 4 type and 10 type repeat arrays and deletions of p13E-11. ThisBglII-BlnI dosage test addresses all the above mentioned complicating factors and can be carried out in addition to the standard Southern blot analysis for FSHD diagnosis as performed in most laboratories. It will enhance the specificity and sensitivity of conventional FSHD diagnosis to the values obtained by PFGE based diagnosis of FSHD. Moreover, this study delimits the FSHD candidate gene region by mapping the 4;10 translocation breakpoint proximal to the polymorphicBlnI site in the first repeat unit.

  • FSHD
  • diagnosis
  • dosage
  • subtelomere

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • * Present address: MGC-Department of Human Genetics, Leiden University Medical Centre, The Netherlands.

  • Present address: Division of Genetics, Queen’s Medical Centre, Nottingham University, Nottingham, UK.