Article Text

Download PDFPDF
Identification of a common low density lipoprotein receptor mutation (C163Y) in the west of Scotland.
  1. W K Lee,
  2. L Haddad,
  3. M J Macleod,
  4. A M Dorrance,
  5. D J Wilson,
  6. D Gaffney,
  7. M H Dominiczak,
  8. C J Packard,
  9. I N Day,
  10. S E Humphries,
  11. A F Dominiczak
  1. Department of Medicine and Therapeutics, Gardiner Institute, Western Infirmary, Glasgow, UK.


    Familial hypercholesterolaemia (FH) is an autosomal codominant disorder characterised by high levels of LDL cholesterol and a high incidence of coronary artery disease. Our aims were to track the low density lipoprotein receptor (LDLR) gene in individual families with phenotypic FH and to identify and characterise any mutations of the LDLR gene that may be common in the west of Scotland FH population using single strand conformational polymorphism analysis (SSCP). Patient samples consisted of 80 heterozygous probands with FH, 200 subjects who were related to the probands, and a further 50 normal, unrelated control subjects. Tracking of the LDLR gene was accomplished by amplification of a 19 allele tetranucleotide microsatellite that is tightly linked to the LDLR gene locus. Primers specific for exon 4 of the LDLR gene were used to amplify genomic DNA and used for SSCP analysis. Any PCR products with different migration patterns as assessed by SSCP were then sequenced directly. In addition to identifying probands with a common mutation, family members were screened using a forced restriction site assay and analysed using microplate array diagonal gel electrophoresis (MADGE). Microsatellite D19S394 analysis was informative in 20 of 23 families studied. In these families there was no inconsistency with segregation of the FH phenotype with the LDLR locus. Of the FH probands, 15/80 had a mutant allele as assessed by SSCP using three pairs of primers covering the whole of exon 4 of the LDLR gene. Direct DNA sequencing showed that 7/15 of the probands had a C163Y mutation. Using a PCR induced restriction site assay for the enzyme RsaI and MADGE, it was determined that the C163Y mutation cosegregated with the FH phenotype in family members of the FH probands. This mutant allele was not present in any of the control subjects. Microsatellite analysis has proven useful in tracking the LDLR gene and could be used in conjunction with LDL cholesterol levels to diagnose FH, especially in children and young adults where phenotypic diagnosis can be difficult.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.