Article Text
Abstract
Four members spanning three generations of one family have phenylketonuria of varying degrees of severity. Two first cousins were screened in the neonatal period and have had dietary phenylalanine restriction since diagnosis, the older patient having been classified as having more severe PKU and the younger one as having mild PKU. Their mutual grandfather and his older brother also have a significant hyperphenylalaninaemia and are of normal intelligence despite never having had restricted phenylalanine intake. Mutation analysis of the phenylalanine hydroxylase (PAH) gene has established that there are four different mutations, two in exon 2 (F39L and L48S) and two in exon 3 (R111X and S67P), which give rise to PKU in this family. In order to establish their relative severity, we screened the PKU populations of western Scotland and the south west of England for these mutations. The exon 3 mutations are rare; however, F39L is relatively common in Scotland and L48S in England. A comparison of diagnostic blood phenylalanine concentrations in subjects carrying L48S/null or F39L/null mutations with those carrying two null mutations suggest that these exon 2 mutations are less deleterious. Thus, in this family, the different biochemical phenotypes can be explained, in part, by different genotypes at the PAH locus but our results show that the relationship between genotype and clinical outcome is more complex and is a function of multiple effects.