Article Text
Abstract
Chromosome in situ suppression hybridisation with biotinylated whole chromosome libraries permits the unequivocable identification of specific human somatic chromosomes in numerous situations. We have now used this so called 'chromosome painting' technique in meiotically dividing cells, isolated from human testicular biopsy. It is shown that the method allows identification of target homologues, bivalents, and sister chromatids throughout the relevant stages of meiosis. Thus, a more accurate study of meiosis per se is now available to increase our understanding of such processes as first meiotic synapsis of homologues and chiasma formation/meiotic crossing over, which are still outstanding biological enigmas. The new technology also makes it possible, for the first time, (1) to obtain direct numerical data in first meiotic non-disjunction for individual chromosomes, and (2) to quantify segregation in male carriers of structural rearrangements. We exemplify the use of the chromosome painting technique for a first meiotic segregation analysis of an insertional translocation carrier.