Article Text

Download PDFPDF
The human Y chromosome.
  1. P Goodfellow,
  2. S Darling,
  3. J Wolfe


    Despite its central role in sex determination, genetic analysis of the Y chromosome has been slow. This poor progress has been due to the paucity of available genetic markers. Whereas the X chromosome is known to include at least 100 functional genetic loci, only three or four loci have been ascribed to the Y chromosome and even the existence of several of these loci is controversial. Other factors limiting genetic analysis are the small size of the Y chromosome, which makes cytogenetic definition difficult, and the absence of extensive recombination. Based on cytogenetic observation and speculation, a working model of the Y chromosome has been proposed. In this classical model the Y chromosome is defined into subregions; an X-Y homologous meiotic pairing region encompassing most of the Y chromosome short arm and, perhaps, including a pseudoautosomal region of sex chromosome exchange; a pericentric region containing the sex determining gene or genes; and a long arm heterochromatic genetically inert region. The classical model has been supported by studies on the MIC2 loci, which encode a cell surface antigen defined by the monoclonal antibody 12E7. The X linked locus MIC2X, which escapes X inactivation, maps to the tip of the X chromosome short arm and the homologous locus MIC2Y maps to the Y chromosome short arm; in both cases, these loci are within the proposed meiotic pairing region. MIC2Y is the first biochemically defined, expressed locus to be found on the human Y chromosome. The proposed simplicity of the classical model has been challenged by recent molecular analysis of the Y chromosome. Using cloned probes, several groups have shown that a major part of the Y chromosome short arm is unlikely to be homologous to the X chromosome short arm. A substantial block of sequences of the short arm are homologous to sequences of the X chromosome long arm but well outside the pairing region. In addition, the short arm contains sequences shared with the Y chromosome long arm and sequences shared with autosomes. About two-thirds of XX males contain detectable Y derived sequences. As the amount of Y sequences present varies in different XX males, DNA from these subjects can be used to construct a map of the region around the sex determining gene. Assuming that XX males are usually caused by simple translocation, the sex determining genes cannot be located in the pericentric region. Although conventional genetic analysis of the Y chromosome is difficult, this chromosome is particularly suited to molecular analysis. Paradoxically, the Y chromosome may soon become the best defined human chromosome at the molecular level and may become the model for other chromosomes.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.