Mechanisms of aneuploidy induction in human oogenesis and early embryogenesis

Cytogenet Genome Res. 2005;111(3-4):237-44. doi: 10.1159/000086894.

Abstract

The mechanisms of aneuploidy induction in human oogenesis mainly involve nondisjunction arising during the first and second meiotic divisions. Nondisjunction equally affects both whole chromosomes and chromatids, in the latter case it is facilitated by "predivision" or precocious centromere division. Karyotyping and CGH studies show an excess of hypohaploidy, which is confirmed in studies of preimplantation embryos, providing evidence in favour of anaphase lag as a mechanism. Preferential involvement of the smaller autosomes has been clearly shown but the largest chromosomes are also abnormal in many cases. Overall, the rate of chromosomal imbalance in oocytes from women aged between 30 and 35 has been estimated at 11% from recent karyotyping data but accruing CGH results suggest that the true figure should be considerably higher. Clear evidence has been obtained in favour of germinal or gonadal mosaicism as a predisposing factor. Constitutional aneuploidy in embryos is most frequent for chromosomes 22, 16, 21 and 15; least frequently involved are chromosomes 14, X and Y, and 6. However, embryos of women under 37 are far more likely to be affected by mosaic aneuploidy, which is present in over 50% of 3-day-old embryos. There are two main types, diploid/aneuploid and chaotic mosaics. Chaotic mosaics arise independently of maternal age and may be related to centrosome anomalies and hence of male origin. Aneuploid mosaics most commonly arise by chromosome loss, followed by chromosome gain and least frequently by mitotic nondisjunction. All may be related to maternal age as well as to lack of specific gene products in the embryo. Partial aneuploidy as a result of chromosome breakage affects a minimum of 10% of embryos.

Publication types

  • Review

MeSH terms

  • Aneuploidy*
  • Chromosome Mapping
  • Embryonic Development / genetics*
  • Female
  • Humans
  • In Situ Hybridization, Fluorescence
  • Nucleic Acid Hybridization
  • Oogenesis / physiology*
  • Pregnancy