Positional preference of proline in alpha-helices

Protein Sci. 1999 Jul;8(7):1492-9. doi: 10.1110/ps.8.7.1492.

Abstract

Conformational free energy calculations have been carried out for proline-containing alanine-based pentadecapeptides with the sequence Ac-(Ala)n-Pro-(Ala)m-NHMe, where n + m = 14, to figure out the positional preference of proline in alpha-helices. The relative free energy of each peptide was calculated by subtracting the free energy of the extended conformation from that of the alpha-helical one, which is used here as a measure of preference. The highest propensity is found for the peptide with proline at the N-terminus (i.e., Ncap + 1 position), and the next propensities are found at Ncap, N' (Ncap - 1), and C' (Ccap + 1) positions. These computed results are reasonably consistent with the positional propensities estimated from X-ray structures of proteins. The breaking in hydrogen bonds around proline is found to play a role in destabilizing alpha-helical conformations, which, however, provides the favored hydration of the corresponding N-H and C=O groups. The highest preference of proline at the beginning of alpha-helix appears to be due to the favored electrostatic and nonbonded energies between two residues preceding proline and the intrinsic stability of alpha-helical conformation of the proline residue itself as well as no disturbance in hydrogen bonds of alpha-helix by proline. The average free energy change for the substitution of Ala by Pro in a alpha-helix is computed to be 4.6 kcal/mol, which is in good agreement with the experimental value of approximately 4 kcal/mol estimated for an oligopeptide dimer and proteins of barnase and T4 lysozyme.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Peptides / chemistry
  • Proline / chemistry*
  • Protein Conformation
  • Static Electricity

Substances

  • Peptides
  • Proline

Associated data

  • PDB/UNKNOWN