Skip to main content
Log in

Diamond-Blackfan Anaemia

An Overview

  • Review Article
  • Published:
Paediatric Drugs Aims and scope Submit manuscript

Abstract

Diamond Blackfan Anaemia (DBA) is a congenital disease characterised by defective erythroid progenitor maturation. It is usually diagnosed during the first year of life. The main clinical sign is profound isolated normochromic or macrocytic anaemia, with normal numbers and function of the other haemopoietic cells. Reticulocyte counts in patients with DBA are very low. Bone marrow reflects the defective erythropoiesis, showing a very low number of erythropoietic precursors and a reduction of erythroid burst-forming unit progenitor cells. The proliferation and differentiation of the other lineages are normal. More than one-third of patients have malformations, most often involving the upper limbs and head, and the urogenital or cardiovascular systems. However, the link between these malformations and defective erythropoiesis is unclear and a defect in a molecule acting on both early embryonic development and haematopoiesis has been proposed. Whereas most cases are sporadic, inheritance is observed in 10% of patients, with a dominant or, more rarely, recessive pattern. One locus on chromosome 19q13.2 encoding ribosomal protein S19 accounts for a quarter of patients with either the dominant or the sporadic form. Families not linked with this locus have also been described. The diagnosis of DBA may be difficult and differential diagnoses include Fanconi’s anaemia and acquired erythroid aplasias. Erythrocyte adenosine deaminase levels are generally high in DBA patients, which may help in the diagnosis, but they are not pathognomic.

Corticosteroids are the main treatment option in DBA and these agents induce erythropoiesis in over 60% of patients. Some patients achieve complete remission, which may be either corticosteroid-induced or spontaneous. The increased in vitro erythropoiesis occasionally induced by the addition of specific cytokines, namely interleukin (IL)-3 and stem cell factor (SCF), has suggested their use in vivo. However, few patients have responded to IL-3, whereas SCF administration, though interesting in theory, has not yet been attempted. Patients who do not respond to corticosteroids and those who have to discontinue treatment because of adverse events must rely on long term transfusions, and are thus exposed to all of the associated complications. Bone marrow or cord blood transplantation has been performed in some patients. The former approach is burdened with severe complications and high mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Fig. 1
Fig. 2
Fig. 3
Table IV

Similar content being viewed by others

References

  1. Diamond KL, Blackfan KD. Hypoplastic anemia. Am J Dis Child 1938; 56: 464–7

    Google Scholar 

  2. Josephs HW. Anaemia of infancy and early childhood. Medicine 1936; 15: 307–451

    Article  Google Scholar 

  3. Young NS, Alter BP. Aplastic anemia: acquired and inherited. Philadelphia (PA): WB Saunders Co., 1994

    Google Scholar 

  4. Halperin DS, Freedman MH. Diamond-Blackfan anemia: etiology, pathophysiology, and treatment. Am J Pediatr Hematol Oncol 1989; 11: 380–94

    PubMed  CAS  Google Scholar 

  5. McKusick VA. Online mendelian inheritance in man (OMIM) [online]. Available from URL: http://www.hgmp.mrc.ac.uk/omim/ [Accessed 2000 Jun]

  6. Draptchinskaia N, Gustavsson P, Andersson B, et al. The ribosomal protein S19 gene is mutated in Diamond-Blackfan anemia. Nat Genet 1999; 21: 168–75

    Google Scholar 

  7. Ball SE, McGuckin CP, Jenkins G, et al. Diamond-Blackfan anaemia in the U.K.: analysis of 80 cases from a 20 year birth cohort. Br J Haematol 1996; 4: 645–53

    Article  Google Scholar 

  8. Willig T-N, Ball SE, Tchernia G. Current concepts and issues in Diamond-Blackfan anemia. Curr Opin Hematol 1998; 5: 109–15

    Article  PubMed  CAS  Google Scholar 

  9. Ramenghi U, Garelli E, Valtolina S, et al. Diamond-Blackfan anaemia in the Italian population. Br J Haematol 1999; 104: 841–8

    Article  PubMed  CAS  Google Scholar 

  10. Janov AJ, Leong TL, Nathan D et al. Diamond-Blackfan anemia: natural history and sequelae of treatment. Medicine 1996; 85: 77–87

    Article  Google Scholar 

  11. Gustavsson P, Garelli E, Draptchinskaia N, et al. Identification of microdeletions spanning the major locus on 19q13 in Diamond-Blackfan anaemia and evidence for at least two DBA loci. Am J Hum Genet 1998; 63: 1388–95

    Article  PubMed  CAS  Google Scholar 

  12. Glader BE, Backer K. Comparative activity of erythrocyte adenosine deaminase and orotidine decarboxylase in DiamondBlackfan anemia. Am J Hematol 1986; 23: 135–9

    Article  PubMed  CAS  Google Scholar 

  13. Whitehouse DB, Hopkinson DA, Pilz AJ, et al. Adenosine deaminase activity in a series of 19 patients with the Diamond-Blackfan syndrome. Acta Exp Med Biol 1986; 195A: 85–9

    Article  Google Scholar 

  14. Willig TN, Perignon JL, Gustavsson P, et al. High adenosine deaminase level among healthy probands of Diamond Black-fananemia (DBA) cosegregates with the DBAgene regionon chromosome 19q13. Blood 1999; 92: 4422–7

    Google Scholar 

  15. Aase JM, Smith DW. Congenital anemia and triphalangeal thumbs: a new syndrome. J Pediatr 1969; 74: 471–4

    Article  PubMed  CAS  Google Scholar 

  16. D’Avanzo M, Pistoia V, Santinelli R, et al. Heterogeneity of the erythropoietic defect in two cases of Aase-Smith syndrome. Pedaitr Hematol Oncol 1994; 11: 189–95

    Article  Google Scholar 

  17. Heegard ED, Hornsleth A. Parvovirus: the expanding spectrum of disease. Acta Paediatr 1995; 84: 109–17

    Article  Google Scholar 

  18. Brown KE, Hibbs JR, Gallinella G, et al. Resistance to Parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen). N Engl J Med 1994; 330: 1192–6

    Article  PubMed  CAS  Google Scholar 

  19. Brown KE, Green SW, De Mayolo JA, et al. Congenital anaemia after transplacental B19 Parvovirus infection. Lancet 1994; 343: 895–6

    Article  PubMed  CAS  Google Scholar 

  20. Tchemia G, Morinet F, Congard B, et al. Diamond Blackfan anaemia: apparent relapse due to B19 Parvovirus. Eur J Pedi-atr 1993; 152: 209–20

    Google Scholar 

  21. Drews U. Color atlas of embryology. New York(NY): Thieme Medical, 1995

    Google Scholar 

  22. Freedman MH, Amato D, Saunders EF. Erythroid colony growth in congenital hypoplastic anemia. J Clin Invest 1976; 57: 673–7

    Article  PubMed  CAS  Google Scholar 

  23. Nathan DG, Clarke BJ, Hillman DG, et al. Erythroid precursors in congenital hypoplastic (Diamond-Blackfan) anemia. J Clin Invest 1978; 61: 489–98

    Article  PubMed  CAS  Google Scholar 

  24. Greinix HT, Storb R, Sanders JE, et al. Long-term survival and cure after marrow transplantation for congenital hypoplastic anemia (Diamond-Blackfan syndrome). Br J Haematol 1993; 84: 515–20

    Article  PubMed  CAS  Google Scholar 

  25. Lenarsky C, Weinberg K, Guinan E, et al. Bone marrow transplantation for constitutional pure red cell aplasia. Blood 1988; 71: 226–9

    PubMed  CAS  Google Scholar 

  26. Mushigima H, Gale RP, Rowlings PA, et al. Bone marrow transplantation for Diamond-Blackfan anemia. Bone Marrow Transplant 1995; 15: 55–8

    Google Scholar 

  27. Santucci MA, Bagnara GP, Strippoli P, et al. Long-term bone marrow cultures in Diamond-Blackfan anemia reveal a defect of both granulomacrophage and erythroid progenitor. Exp Hematol 1999; 27: 9–18

    Article  PubMed  CAS  Google Scholar 

  28. Lipton JM, Kudisch M, Gross R, et al. Defective erythroid progenitor differentiation system in congenital hypoplastic (Diamond-Blackfan) anemia. Blood 1986; 67: 962–8

    PubMed  CAS  Google Scholar 

  29. Tsai PH, Arkin S, Lipton JM. An intrinsic progenitor defect in Diamond-Blackfan anaemia. Br J Haematol 1989; 73: 112–20

    Article  PubMed  CAS  Google Scholar 

  30. Halperin DS, Estrov Z, Freedman MH. Diamond-Blackfan anemia: promotion of marrow erythropoiesis in vitro by recombinant interleukin-3. Blood 1989; 73: 1168–74

    PubMed  CAS  Google Scholar 

  31. Abkowitz JA, Sabo KM, Nakamoto B, et al. Diamond-Blackfan anemia: in vitro response of erythroid progenitors to the ligand for c-kit. Blood 1994; 78: 2198–202

    Google Scholar 

  32. Alter BP, Knobloch ME, He L, et al. Effect of stem cell factor on in vitro erythropoiesis in patients with bone marrow failure syndromes. Blood 1992; 80: 3000–8

    PubMed  CAS  Google Scholar 

  33. Olivieri NF, Grunberger T, Ben David Y, et al. Diamond-Blackfan anemia: heterogeneous response to hematopoietic progenitor cells in vitro to the protein product of the Steel locus. Blood 1991; 78: 2211–5

    PubMed  CAS  Google Scholar 

  34. Bagnara GP, Zauli G, Vitale L, et al. In vitro growth and regulation of bone marrow enriched CD34+ hematopoietic progenitors in Diamond-Blackfan anemia. Blood 1994; 78: 2203–10

    Google Scholar 

  35. McGuckin C, Ball S, Gordon-Smith EC. Diamond Blackfan anemia: three patterns of in vitro response to haematopoietic growth factors. Br J Haematol 1995; 89: 457–64

    Article  PubMed  CAS  Google Scholar 

  36. Casadevall N, Croisille L, Auffray I, et al. Age-related alterations in erythroid and granulopoietic progenitors in Diamond-Blackfan anaemia. Br J Haematol 1994; 87: 369–75

    Article  PubMed  CAS  Google Scholar 

  37. Dianzani I, Garelli E, Crescenzo N, et al. Diamond-Blackfan anemia: expansion of erythroid progenitors in vitro by IL-9, but exclusion of a significant pathogenetic role for the IL-9 gene and the hematopoietic gene cluster on chromosome 5q. Exp Hematol 1997; 25: 1270–7

    PubMed  CAS  Google Scholar 

  38. Kehrl JH. Hematopoietic lineage commitment: role of transcription factors. Stem Cells 1995; 13: 223–41

    Article  PubMed  CAS  Google Scholar 

  39. Zhu Y, D’Andrea AD. The molecular physiology of the erythropoietin receptor. Curr Opin Hematol 1994; 1: 113–8

    PubMed  CAS  Google Scholar 

  40. Dianzani I, Garelli E, Dompè C, et al. Mutations in the erythropoietin receptor gene are not a common cause of DiamondBlackfan anemia. Blood 1996; 87: 2568–72

    PubMed  CAS  Google Scholar 

  41. Drachtman RA, Geissler EN, Alter BP. The SCF and c-kit genes in Diamond-Blackfan anemia. Blood 1992; 79: 2177–8

    PubMed  CAS  Google Scholar 

  42. Abkowitz JL, Broudy VC, Benet LG, et al. Absence of abnormalities of c-kit or its ligand in two patients with DiamondBlackfan anemia. Blood 1992; 79: 25–8

    PubMed  CAS  Google Scholar 

  43. Gustavsson P, Skeppner G, Johansson B, et al. Diamond-Blackfan anaemia in a girl with a de novo balanced reciprocal (X;19) translocation. J Med Genet 1997; 34: 779–82

    Article  PubMed  CAS  Google Scholar 

  44. Gustavsson P, Willig TN, Van Haeringen A, et al. DiamondBlackfan anaemia: genetic homogeneity for a gene on chromosome 19q13 restricted to 1.8Mb. Nat Genet 1997; 16: 368–71

    Article  PubMed  CAS  Google Scholar 

  45. Thompson J, Zimmermann W, Osthus-Bugat P, et al. Longrange chromosomal mapping of the carcinoembryonic antigen (CEA) gene family cluster. Genomics 1992; 12: 761–72

    Article  PubMed  CAS  Google Scholar 

  46. Teglund S, Olsen A, Khan WN, et al. The pregnancy-specific glycoprotein (PSG) gene cluster on human chromosome 19: fine structure of the 11 PSG genes and identification of six new genes forming a third subgroup with the carcinoembryonic antigen (CEA) family. Genomics 1994; 23: 669–84

    Article  PubMed  CAS  Google Scholar 

  47. Chen KS, Manian P, Koenth T, et al. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet 1997; 17: 154–63

    Article  PubMed  CAS  Google Scholar 

  48. Glader BE, Guinan E, Lipton JM, et al. Congenital bone marrow failure syndromes: diagnostic and therapeutic strategies (1998). In: McArthur JR, Schechter GP, Schrier SL, et al., editors. Hematology 1998: the American Society of Hematology Education Program Book. Washington, DC: American Society of Hematology 1998: 384–403

    Google Scholar 

  49. Ozsoylu S. High-dose intravenous corticosteroid treatment for patients with Diamond-Blackfan syndrome resistant or refractory to conventional treatment. Am J Pediatr Hematol Oncol 1988; 10: 217–23

    Article  PubMed  CAS  Google Scholar 

  50. Bernini JC, Carrillo JM, Buchanan GR. High-dose intravenous methylprednisolone therapy for patients with DiamondBlackfan anemia refractory to conventional doses of prednisone. J Pediatr 1995; 127: 654–9

    Article  PubMed  CAS  Google Scholar 

  51. Bejaoui M, Fitouri Z, Sfar MT, et al. Failure of immunosuppressive therapy and high-dose intravenous immunoglobulins in four transfusion-dependent, steroid-unresponsive Blackfan-Diamond anemia patients. Haematologica 1993; 78: 38–9

    PubMed  CAS  Google Scholar 

  52. Neimeyer CM, Baumgarten E, Holldack J, et al. Treatment trial with recombinant human erythropoietin in children with congenital hypoplastic anemia. Contrib Nephrol 1991; 88: 276–80

    Google Scholar 

  53. Dunbar CE, Smith DA, Kimball J, et al. Treatment of Diamond-Blackfan anemia with haematopoietic growth factors, granulocyte-macrophage colony stimulating factor and interleukin-3: sustained remissions following IL-3. Br J Haematol 1991; 79: 316–21

    Article  PubMed  CAS  Google Scholar 

  54. Olivieri NF, Feig SA, Valentino L, et al. Failure of recombinant human interleukin-3 therapy to induce erythropoiesis in patients with refractory Diamond-Blackfan anemia. Blood 1994; 83: 2444–50

    PubMed  CAS  Google Scholar 

  55. Gillio AP, Faulkner LB, Alter BP, et al. Treatment of Diamond-Blackfan anemia with recombinant human interleukin-3. Blood 1993; 822: 744–51

    Google Scholar 

  56. Bastion Y, Bordigoni P, Debre M, et al. Sustained response after recombinant interleukin-3 in Diamond-Blackfan anemia. Blood 1994; 83: 617–8

    PubMed  CAS  Google Scholar 

  57. Ball SE, Tchernia G, Wranne L, et al. Is there a role for interleukin-3 in Diamond-Blackfan anemia? Results of a European multicentre study. Br J Haematol 1995; 91: 313–8

    Article  PubMed  CAS  Google Scholar 

  58. Briddell R, Glaspy J, Shpall EJ, et al. Recombinant human stem cell factor (rhSCF) and filgrastim (rhG-CSF) synergize to mobilise myeloid, erythroid and megakaryocyte progenitors inpatients with breast cancer [abstract]. Br J Haematol 1994; 87Suppl. 1: 92

    Google Scholar 

  59. Glaspy J, Le Maistre ML, Jones R, et al. Dose-response of 7day administration of recombinant methionyl human stem cell factor (SCF) in combination with filgrastim (G-CSF) for progenitor cell mobilization in patients with stage II breast cancer [abstract]. Blood 1995; 86Suppl. 1: 463

    Google Scholar 

  60. Alter BP, Bonno M, Azuma E. Correspondence: bone marrow transplant in Diamond-Blackfan Anemia. Bone Marrow Transplant 1998; 21: 965–7

    Article  PubMed  CAS  Google Scholar 

  61. Kurtzberg J, Laughlin M, Graham ML, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 1996; 335: 157–66

    Article  PubMed  CAS  Google Scholar 

  62. Bonno M, Azuma E, Nakano T, et al. Sussessful hematopoietic reconstitution by transplantation of umbilical cord blood cells in a transfusion-dependent child with Diamond-Blackfan anemia. Bone Marrow Transplant 1997; 19: 83–5

    Article  PubMed  CAS  Google Scholar 

  63. Vettenranta K, Saarinen UM. Cord blood stem cell trasplantation for Diamond-Blackfan aemia. Marrow Transplant 1997; 19: 507–8

    Article  CAS  Google Scholar 

  64. Erslev AJ. Pure red cell aplasia. In: Beutler E, Lichtman MA, Coller BS, et al., editors. Williams hematology. 5th ed. New York(NY): McGraw Hill Inc., 1995: 448–56

    Google Scholar 

  65. Basso G, Cocito MG, Rebuffi L, et al. Congenital hypoplastic anaemia developed in acute megakaryoblastic leukaemia. Helv Paediatr Acta 1981; 36: 267–70

    PubMed  CAS  Google Scholar 

  66. Glader BE, Flam MS, Dahl GV, et al. Hematological malignancies in Diamond-Blackfan anemia [abstract]. Pediatr Res 1990; 27: 142A

    Google Scholar 

  67. Aquino VM, Buchanan GR. Osteogenic sarcoma in a child with transfusion dependent Diamond-Blackfan anemia. J Pediatr Hematol Oncol 1996; 18: 230–2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor C. Camaschella for reading the manuscript and her helpful suggestions. The support of the DBA Working Group of the European Society for Paediatric Haematology and Immunology is gratefully acknowledged. The work reported in this article was partially supported by Telethon Italia, project E.619, and by a Ministero Universita’ e Ricerca Scientifica e Tecnologica (MURST) 60% grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Dianzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dianzani, I., Garelli, E. & Ramenghi, U. Diamond-Blackfan Anaemia. Paediatr Drugs 2, 345–355 (2000). https://doi.org/10.2165/00128072-200002050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128072-200002050-00002

Keywords

Navigation