Exp Clin Endocrinol Diabetes 2005; 113(6): 318-323
DOI: 10.1055/s-2005-865646
Article

J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

A Heteroplasmic Mitochondrial DNA 3310 Mutation in the ND1 Gene in a Patient with Type 2 Diabetes, Hypertrophic Cardiomyopathy, and Mental Retardation

Y. Hattori1 , 2 , M. Takeoka1 , K. Nakajima2 , T. Ehara3 , M. Koyama4
  • 1Department of Molecular Oncology, Division of Molecular and Cellular Biology Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Japan
  • 2Department of Internal Medicine, Asama General Hospital, Saku, Japan
  • 3Department of Histopathology, Shinshu University School of Medicine, Matsumoto, Japan
  • 4Department of Pathology, Komoro Kosei General Hospital, Komoro, Japan
Further Information

Publication History

Received: July 10, 2004 First decision: September 20, 2004

Accepted: March 17, 2005

Publication Date:
23 June 2005 (online)

Abstract

A mentally retarded 57-year-old Japanese man with maternally-inherited type 2 diabetes was found to have hypertrophic cardiomyopathy (HCM) that was associated with pathological changes in the myocardial mitochondria. The mitochondrial DNA (mtDNA) of this patient was examined and a C3310 T mutation was found in the ND1 gene, which resulted in the substitution of serine for proline. The normal 3310 mtDNA band could not be detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in mtDNA from his myocardium, pancreas, cerebral tissue, skeletal muscle, and lymphocytes. However two clones sequenced from his pancreatic tissue did not show this C3310 T mutation while forty-eight did. Mitochondria isolated from the lymphocytes of his two sisters also had this mutation. mtDNA point mutations in the ND1 gene region reported thus far have been mostly homoplasmic. However, the C3310 T point mutation that was found in this patient was heteroplasmic, which is a high level of mutation and may represent the pathogenic gene that was responsible for causing mitochondrial disease.

References

  • 1 Anderson S, Bankier A T, Barrell B G, de Bruijn M H, Coulson A R, Drouin J, Eperon I C, Nierlich D P, Roe B A, Sanger F, Schreier P H, Smith A J, Staden R, Young I G. Sequence and organization of the human mitochondrial genome.  Nature. 1981;  290 457-465
  • 2 Anan R, Nakagawa M, Miyata M, Higuchi M D, Nakao S, Suehara M, Osame M, Tanaka H. Cardiac involvement in mitochondrial diseases: a study on 17 patients with documented mitochondrial DNA defects.  Circulation. 1995;  91 955-961
  • 3 Earley F G, Ragan C I. Photoaffinity labeling of mitochondrial NADH dehydrogenase with arylazidoamorphigenin, an analogue of rotenone.  Biochem J. 1984;  224 525-534
  • 4 Fearnley I M, Walker J E. Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins.  Biochim Biophys Acta. 1992;  1140 105-134
  • 5 Ghelli A, Zanna C, Porcelli A M, Schapira A H, Martinuzzi A, Carelli V, Rugolo M. Leber's hereditary optic neuropathy (LHON) pathogenic mutations induce mitochondrial-dependent apoptotic death in transmitochondrial cells incubated with galactose medium.  J Biol Chem. 2003;  278 4145-4150
  • 6 Goto Y, Nonaka I, Horai S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies.  Nature. 1990;  348 651-653
  • 7 Hanzlikova V, Schiaffino S. Mitochondrial changes in ischemic skeletal muscle.  J Ultrastuct Res. 1977;  60 121-133
  • 8 Hattori Y, Nakajima K, Eizawa T, Ehara T, Koyama M, Hirai T, Fukuda Y, Kinoshita M. Heteroplasmic mitochondrial DNA 3310 mutation in NADH dehydrogenase subunit 1 associated with type 2 diabetes, hypertrophic cardiomyopathy, and mental retardation in a single patient.  Diabetes Care. 2003;  26 952-953
  • 9 Hirai M, Suzuki S, Onoda M, Hinokio Y, Ai L, Hirai A, Ohtomo M, Komatsu K, Kasuga S, Satoh Y, Akai H, Toyota T. Mitochondrial DNA 3394 mutation in the NADH dehydrogenase subunit 1 associated with non-insulin-dependent diabetes mellitus.  Biochem Biophys Res Commun. 1996;  219 951-955
  • 10 Howell N. Leber hereditary optic neuropathy: mitochondrial mutations and degeneration of the optic nerve.  Vision Res. 1997;  37 3495-3507
  • 11 Kadowaki T, Kadowaki H, Mori Y, Tobe K, Sakuta R, Suzuki Y, Tanabe Y, Sakura H, Awata T, Goto Y, Hayakawa T, Matsuoka K, Kawamori R, Kamata T, Horai S, Nonaka I, Hagura R, Akanuma Y, Yazaki Y. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA.  New Engl J Med. 1994;  330 962-968
  • 12 Karpati G, Carpenter S, Melmed C, Eisen A A. Experimental ischemic myopathy.  J Neurol Sci. 1974;  23 129-161
  • 13 Kobayashi T, Nakanishi K, Nakase H, Kajio H, Okubo M, Murase T, Kosaka K. In situ characterization of islets in diabetes with a mitochondrial DNA mutation at nucleotide position 3243.  Diabetes. 1997;  46 1567-1571
  • 14 Li X, Fischel-Ghodsian N, Schwartz F, Yan Q, Friedman R A, Guan M X. Biochemical characterization of the mitochondrial tRNASer(UCN) T7511 C mutation associated with nonsyndromic deafness.  Nucleic Acids Res. 2004;  32 867-877
  • 15 Mackey D A, Oostra R J, Rosenberg T, Nikoskelainen E, Bronte-Stewart J, Poulton J, Harding A E, Govan G, Bolhuis P A, Norby S. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy.  Am J Hum Genet. 1996;  59 481-485
  • 16 Momiyama Y, Suzuki Y, Ohsuzu F, Atsumi Y, Matsuoka K, Kimura M. Left ventricular hypertrophy and diastolic dysfunction in mitochondrial diabetes.  Diabetes Care. 2001;  24 604-605
  • 17 Nakagawa Y, Ikegami H, Yamato E, Takekawa K, Fujisawa T, Hamada Y, Ueda H, Uchigata Y, Miki T, Kumahara Y, Ogihara T. A new mitochondrial DNA mutation associated with non-insulin-dependent diabetes mellitus.  Biochem Biophys Res Commun. 1995;  209 664-668
  • 18 Nikoskelainen E K. Clinical picture of LHON.  Clin Neurosci. 1994;  2 115-120
  • 19 Ragan C I. Structure of NADH-ubiquinone reductase (Complex I).  Curr Top Bioenerg. 1987;  15 1
  • 20 Shoffner J M, Brown M D, Torroni A, Lott M T, Cabell M F, Mirra S S, Beal M F, Yang C, Gearing M, Salvo R, Watts R L, Juncos J L, Hansen L A, Crain B J, Fayad M, Reckord C L, Wallace D C. Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients.  Genomics. 1993;  17 171-184
  • 21 Shoffner J M, Wallace D C. Oxidative phosphorylation diseases. Scriver CR, Beaudet AL, Sly WS, Valle D The Metabolic and Molecular Bases of Inherited Disease. 7th ed. New York; McGraw-Hill 1998: 1535-1609
  • 22 Stadhouders A M, Jap P H, Winkler H P, Eppenberger H M, Wallimann T. Mitochondrial creatine kinase: a major constituent of pathological inclusions seen in mitochondrial myopathies.  Proc Natl Acad Sci USA. 1994;  91 5089-5093
  • 23 Torroni A, Petrozzi M, D'Urbano L, Sellitto D, Zeviani M, Carrara F, Carducci C, Leuzzi V, Carelli V, Barboni P, De Negri A, Scozzari R. Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11 778 and 14 484.  Am J Hum Genet. 1997;  60 1107-1121

Y. Hattori

Department of Molecular Oncology
Division of Molecular and Cellular Biology Institute on Aging and Adaptation
Shinshu University Graduate School of Medicine

Asahi 3-1-1

Matsumoto

Japan

Phone: + 81263372723

Fax: + 81 2 63 37 27 24

Email: u-chan@avis.ne.jp

    >