Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects

Abstract

Interindividual differences in drug disposition are important causes for adverse drug reactions and lack of drug response. The majority of phase I and phase II drug-metabolizing enzymes (DMEs) are polymorphic and constitute essential factors for the outcome of drug therapy. Recently, both genome-wide association (GWA) studies with a focus on drug response, as well as more targeted studies of genes encoding DMEs have revealed in-depth information and provided additional information for variation in drug metabolism and drug response, resulting in increased knowledge that aids drug development and clinical practice. In addition, an increasing number of meta-analyses have been published based on several original and often conflicting pharmacogenetic studies. Here, we review data regarding the pharmacogenomics of DMEs, with particular emphasis on novelties. We conclude that recent studies have emphasized the importance of CYP2C19 polymorphism for the effects of clopidogrel, whereas the CYP2C9 polymorphism appears to have a role in anticoagulant treatment, although inferior to VKORC1. Furthermore, the analgesic and side effects of codeine in relation to CYP2D6 polymorphism are supported and the influence of CYP2D6 genotype on breast cancer recurrence during tamoxifen treatment appears relevant as based on three large studies. The influence of CYP2D6 polymorphism on the effect of antidepressants in a clinical setting is yet without any firm evidence, and the relation between CYP2D6 ultrarapid metabolizers and suicide behavior warrants further studies. There is evidence for the influence of CYP3A5 polymorphism on tacrolimus dose, although the influence on response is less studied. Recent large GWA studies support a link between CYP1A2 polymorphism and blood pressure as well as coffee consumption, and between CYP2A6 polymorphism and cigarette consumption, which in turn appears to influence the lung cancer incidence. Regarding phase II enzyme polymorphism, the anticancer treatment with mercaptopurines and irinotecan is still considered important in relation to the polymorphism of TPMT and UGT1A1, respectively. There is a need for further clarification of the clinical importance and use of all these findings, but the recent research in the field that encompasses larger studies and a whole genome perspective, improves the possibilities be able to make firm and cost-effective recommendations for drug treatment in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Sim SC, Ingelman-Sundberg M . Pharmacogenomic biomarkers: new tools in current and future drug therapy. Trends Pharmacol Sci 2011; 32: 72–81.

    CAS  PubMed  Google Scholar 

  2. Li J, Zhang L, Zhou H, Stoneking M, Tang K . Global patterns of genetic diversity and signals of natural selection for human ADME genes. Hum Mol Genet 2011; 20: 528–540.

    CAS  PubMed  Google Scholar 

  3. Frueh FW, Amur S, Mummaneni P, Epstein RS, Aubert RE, DeLuca TM et al. Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacotherapy 2008; 28: 992–998.

    PubMed  Google Scholar 

  4. Sadee W, Wang D, Papp AC, Pinsonneault JK, Smith RM, Moyer RA et al. Pharmacogenomics of the RNA world: structural RNA polymorphisms in drug therapy. Clin Pharmacol Ther 2011; 89: 355–365.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA . The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994; 269: 15419–15422.

    CAS  PubMed  Google Scholar 

  6. Ibeanu GC, Blaisdell J, Ghanayem BI, Beyeler C, Benhamou S, Bouchardy C et al. An additional defective allele, CYP2C19*5, contributes to the S-mephenytoin poor metabolizer phenotype in Caucasians. Pharmacogenetics 1998; 8: 129–135.

    CAS  PubMed  Google Scholar 

  7. Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U et al. Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 2001; 11: 399–415.

    CAS  PubMed  Google Scholar 

  8. Tsuchiya K, Gatanaga H, Tachikawa N, Teruya K, Kikuchi Y, Yoshino M et al. Homozygous CYP2B6 *6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenz-containing regimens. Biochem Biophys Res Commun 2004; 319: 1322–1326.

    CAS  PubMed  Google Scholar 

  9. Hofmann MH, Blievernicht JK, Klein K, Saussele T, Schaeffeler E, Schwab M et al. Aberrant splicing caused by single nucleotide polymorphism c.516G>T [Q172H], a marker of CYP2B6*6, is responsible for decreased expression and activity of CYP2B6 in liver. J Pharmacol Exp Ther 2008; 325: 284–292.

    CAS  PubMed  Google Scholar 

  10. Ehmer U, Kalthoff S, Fakundiny B, Pabst B, Freiberg N, Naumann R et al. Gilbert syndrome redefined: a complex genetic haplotype influences the regulation of glucuronidation. Hepatology 2012; 55: 1912–1921.

    CAS  PubMed  Google Scholar 

  11. Aiello M, Vella N, Cannavo C, Scalisi A, Spandidos DA, Toffoli G et al. Role of genetic polymorphisms and mutations in colorectal cancer therapy (Review). Mol Med Report 2011; 4: 203–208.

    CAS  Google Scholar 

  12. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 2006; 79: 103–113.

    CAS  PubMed  Google Scholar 

  13. Djordjevic N, Ghotbi R, Jankovic S, Aklillu E . Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2 -163C>A polymorphism. Eur J Clin Pharmacol 2010; 66: 697–703.

    CAS  PubMed  Google Scholar 

  14. Han XM, Ouyang DS, Chen XP, Shu Y, Jiang CH, Tan ZR et al. Inducibility of CYP1A2 by omeprazole in vivo related to the genetic polymorphism of CYP1A2. Br J Clin Pharmacol 2002; 54: 540–543.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W . Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 2011; 11: 274–286.

    PubMed  Google Scholar 

  16. Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM, Bennett SN et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genet 2011; 7: e1002033.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sulem P, Gudbjartsson DF, Geller F, Prokopenko I, Feenstra B, Aben KK et al. Sequence variants at CYP1A1-CYP1A2 and AHR associate with coffee consumption. Hum Mol Genet 2011; 20: 2071–2077.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Amin N, Byrne E, Johnson J, Chenevix-Trench G, Walter S, Nolte IM et al. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol Psychiatry 2012; 17: 1031–1041.

    CAS  PubMed  Google Scholar 

  19. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 2009; 41: 666–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011; 478: 103–109.

    CAS  PubMed  Google Scholar 

  21. Palatini P, Ceolotto G, Ragazzo F, Dorigatti F, Saladini F, Papparella I et al. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J Hypertens 2009; 27: 1594–1601.

    CAS  PubMed  Google Scholar 

  22. Guessous I, Dobrinas M, Kutalik Z, Pruijm M, Ehret G, Maillard M et al. Caffeine intake and CYP1A2 variants associated with high caffeine intake protect non-smokers from hypertension. Hum Mol Genet 2012; 21: 3283–3292.

    CAS  PubMed  Google Scholar 

  23. Gold AB, Lerman C . Pharmacogenetics of smoking cessation: role of nicotine target and metabolism genes. Hum Genet, advance online publication, 31 January 2012 (e-pub ahead of print).

  24. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 2010; 42: 448–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 2010; 42: 441–447.

    Google Scholar 

  26. Siedlinski M, Cho MH, Bakke P, Gulsvik A, Lomas DA, Anderson W et al. Genome-wide association study of smoking behaviours in patients with COPD. Thorax 2011; 66: 894–902.

    PubMed  PubMed Central  Google Scholar 

  27. Tang DW, Hello B, Mroziewicz M, Fellows LK, Tyndale RF, Dagher A . Genetic variation in CYP2A6 predicts neural reactivity to smoking cues as measured using fMRI. Neuroimage 2012; 60: 2136–2143.

    CAS  PubMed  Google Scholar 

  28. Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF . Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst 2011; 103: 1342–1346.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rotunno M, Yu K, Lubin JH, Consonni D, Pesatori AC, Goldstein AM et al. Phase I metabolic genes and risk of lung cancer: multiple polymorphisms and mRNA expression. PloS One 2009; 4: e5652.

    PubMed  PubMed Central  Google Scholar 

  30. Fujieda M, Yamazaki H, Saito T, Kiyotani K, Gyamfi MA, Sakurai M et al. Evaluation of CYP2A6 genetic polymorphisms as determinants of smoking behavior and tobacco-related lung cancer risk in male Japanese smokers. Carcinogenesis 2004; 25: 2451–2458.

    CAS  PubMed  Google Scholar 

  31. Ariyoshi N, Miyamoto M, Umetsu Y, Kunitoh H, Dosaka-Akita H, Sawamura Y et al. Genetic polymorphism of CYP2A6 gene and tobacco-induced lung cancer risk in male smokers. Cancer Epidemiol Biomarkers Prev 2002; 11: 890–894.

    CAS  PubMed  Google Scholar 

  32. Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 2008; 112: 1022–1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 2009; 5: e1000433.

    PubMed  PubMed Central  Google Scholar 

  34. Cha PC, Mushiroda T, Takahashi A, Kubo M, Minami S, Kamatani N et al. Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese. Hum Mol Genet 2010; 19: 4735–4744.

    CAS  PubMed  Google Scholar 

  35. Teichert M, Eijgelsheim M, Rivadeneira F, Uitterlinden AG, van Schaik RH, Hofman A et al. A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet 2009; 18: 3758–3768.

    CAS  PubMed  Google Scholar 

  36. Epstein RS, Moyer TP, Aubert RE, O Kane DJ, Xia F, Verbrugge RR et al. Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J Am Coll Cardiol 2010; 55: 2804–2812.

    CAS  PubMed  Google Scholar 

  37. Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, Mansfield JW et al. Randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing: CoumaGen-II. Circulation 2012; 125: 1997–2005.

    CAS  PubMed  Google Scholar 

  38. Elens L, Becker ML, Haufroid V, Hofman A, Visser LE, Uitterlinden AG et al. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in The Rotterdam Study. Pharmacogenet Genomics 2011; 21: 861–866.

    CAS  PubMed  Google Scholar 

  39. Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem 2011; 57: 1574–1583.

    CAS  PubMed  Google Scholar 

  40. Elens L, van Schaik RH, Panin N, de Meyer M, Wallemacq P, Lison D et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors' dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics 2011; 12: 1383–1396.

    CAS  Google Scholar 

  41. Elens L, Bouamar R, Hesselink DA, Haufroid V, van Gelder T, van Schaik RH . The new CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with an increased risk of delayed graft function and worse renal function in cyclosporine-treated kidney transplant patients. Pharmacogenet Genomics 2012; 22: 373–380.

    CAS  PubMed  Google Scholar 

  42. Hulot JS, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 2006; 108: 2244–2247.

    CAS  PubMed  Google Scholar 

  43. Shuldiner AR, O'Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. Jama 2009; 302: 849–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Holmes MV, Perel P, Shah T, Hingorani AD, Casas JP . CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis. Jama 2011; 306: 2704–2714.

    CAS  PubMed  Google Scholar 

  45. Li Y, Tang HL, Hu YF, Xie HG . The gain-of-function variant allele CYP2C19*17: a double-edged sword between thrombosis and bleeding in clopidogrel-treated patients. J Thromb Haemost 2012; 10: 199–206.

    CAS  PubMed  Google Scholar 

  46. Bauer T, Bouman HJ, van Werkum JW, Ford NF, ten Berg JM, Taubert D . Impact of CYP2C19 variant genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis. BMJ 2011; 343: d4588.

    PubMed  PubMed Central  Google Scholar 

  47. Liu YP, Hao PP, Zhang MX, Zhang C, Gao F, Zhang Y et al. Association of genetic variants in CYP2C19 and adverse clinical outcomes after treatment with clopidogrel: an updated meta-analysis. Thromb Res 2011; 128: 593–594.

    CAS  PubMed  Google Scholar 

  48. Zabalza M, Subirana I, Sala J, Lluis-Ganella C, Lucas G, Tomas M et al. Meta-analyses of the association between cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular outcomes in patients with coronary artery disease treated with clopidogrel. Heart 2012; 98: 100–108.

    CAS  PubMed  Google Scholar 

  49. Mega JL, Simon T, Collet JP, Anderson JL, Antman EM, Bliden K et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. Jama 2010; 304: 1821–1830.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jin B, Ni HC, Shen W, Li J, Shi HM, Li Y . Cytochrome P450 2C19 polymorphism is associated with poor clinical outcomes in coronary artery disease patients treated with clopidogrel. Mol Biol Rep 2011; 38: 1697–1702.

    CAS  PubMed  Google Scholar 

  51. Hulot JS, Collet JP, Silvain J, Pena A, Bellemain-Appaix A, Barthelemy O et al. Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration: a systematic meta-analysis. J Am Coll Cardiol 2010; 56: 134–143.

    CAS  PubMed  Google Scholar 

  52. Sofi F, Giusti B, Marcucci R, Gori AM, Abbate R, Gensini GF . Cytochrome P450 2C19*2 polymorphism and cardiovascular recurrences in patients taking clopidogrel: a meta-analysis. Pharmacogenomics J 2011; 11: 199–206.

    CAS  PubMed  Google Scholar 

  53. Harmsze AM, van Werkum JW, Hackeng CM, Ruven HJ, Kelder JC, Bouman HJ et al. The influence of CYP2C19*2 and *17 on on-treatment platelet reactivity and bleeding events in patients undergoing elective coronary stenting. Pharmacogenet Genomics 2012; 22: 169–175.

    CAS  PubMed  Google Scholar 

  54. Mega JL, Topol EJ, Sabatine MS . CYP2C19 genotype and cardiovascular events. Jama 2012; 307: 1482–1483, author reply 1484–1485.

    CAS  PubMed  Google Scholar 

  55. Johnson JA, Roden DM, Lesko LJ, Ashley E, Klein TE, Shuldiner AR . Clopidogrel: a case for indication-specific pharmacogenetics. Clin Pharmacol Ther 2012; 91: 774–776.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ten Berg JM, Deneer VH . Antiplatelet therapy: does CYP2C19 genotype affect clinical outcome? Nat Rev Cardiol 2012; 9: 192–194.

    CAS  PubMed  Google Scholar 

  57. Bouman HJ, Harmsze AM, van Werkum JW, Breet NJ, Bergmeijer TO, Ten Cate H et al. Variability in on-treatment platelet reactivity explained by CYP2C19*2 genotype is modest in clopidogrel pretreated patients undergoing coronary stenting. Heart 2011; 97: 1239–1244.

    CAS  PubMed  Google Scholar 

  58. Mega JL, Hochholzer W, Frelinger AL, Kluk MJ, Angiolillo DJ, Kereiakes DJ et al. Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. Jama 2011; 306: 2221–2228.

    CAS  PubMed  Google Scholar 

  59. Roberts JD, Wells GA, Le May MR, Labinaz M, Glover C, Froeschl M et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet 2012; 379: 1705–1711.

    CAS  PubMed  Google Scholar 

  60. Bouman HJ, Schomig E, van Werkum JW, Velder J, Hackeng CM, Hirschhauser C et al. Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med 2011; 17: 110–116.

    CAS  PubMed  Google Scholar 

  61. Sibbing D, Koch W, Massberg S, Byrne RA, Mehilli J, Schulz S et al. No association of paraoxonase-1 Q192R genotypes with platelet response to clopidogrel and risk of stent thrombosis after coronary stenting. Eur Heart J 2011; 32: 1605–1613.

    CAS  PubMed  Google Scholar 

  62. Trenk D, Hochholzer W, Fromm MF, Zolk O, Valina CM, Stratz C et al. Paraoxonase-1 Q192R polymorphism and antiplatelet effects of clopidogrel in patients undergoing elective coronary stent placement. Circ Cardiovasc Genet 2011; 4: 429–436.

    CAS  PubMed  Google Scholar 

  63. Irvin WJ, Walko CM, Weck KE, Ibrahim JG, Chiu WK, Dees EC et al. Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 2011; 29: 3232–3239.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kiyotani K, Mushiroda T, Nakamura Y, Zembutsu H . Pharmacogenomics of tamoxifen: roles of drug metabolizing enzymes and transporters. Drug Metab Pharmacokinet 2012; 27: 122–131.

    CAS  PubMed  Google Scholar 

  65. Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW et al. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 2011; 89: 718–725.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cronin-Fenton DP, Lash TL . Clinical epidemiology and pharmacology of CYP2D6 inhibition related to breast cancer outcomes. Expert Rev 2011; 4: 363–377.

    CAS  Google Scholar 

  67. Seruga B, Amir E . Cytochrome P450 2D6 and outcomes of adjuvant tamoxifen therapy: results of a meta-analysis. Breast Cancer Res Treat 2010; 122: 609–617.

    CAS  PubMed  Google Scholar 

  68. Schroth W, Hamann U, Fasching PA, Dauser S, Winter S, Eichelbaum M et al. CYP2D6 polymorphisms as predictors of outcome in breast cancer patients treated with tamoxifen: expanded polymorphism coverage improves risk stratification. Clin Cancer Res 2010; 16: 4468–4477.

    CAS  PubMed  Google Scholar 

  69. Thompson AM, Johnson A, Quinlan P, Hillman G, Fontecha M, Bray SE et al. Comprehensive CYP2D6 genotype and adherence affect outcome in breast cancer patients treated with tamoxifen monotherapy. Breast Cancer Res Treat 2011; 125: 279–287.

    CAS  PubMed  Google Scholar 

  70. Schroth W, Goetz MP, Hamann U, Fasching PA, Schmidt M, Winter S et al. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. Jama 2009; 302: 1429–1436.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Regan MM, Leyland-Jones B, Bouzyk M, Pagani O, Tang W, Kammler R et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: The Breast International Group 1-98 Trial. J Natl Cancer Inst 2012; 104: 441–451.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rae JM, Drury S, Hayes DF, Stearns V, Thibert JN, Haynes BP et al. CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst 2012; 104: 452–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Abraham JE, Maranian MJ, Driver KE, Platte R, Kalmyrzaev B, Baynes C et al. CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen. Breast Cancer Res 2010; 12: R64.

    PubMed  PubMed Central  Google Scholar 

  74. Goldberg P . Experts claim errors in Breast Cancer Study, demand retraction of practice-changing paper. Cancer Letter 2012; 38: 1–7.

    Google Scholar 

  75. Kiyotani K, Mushiroda T, Tsunoda T, Morizono T, Hosono N, Kubo M et al. A genome-wide association study identifies locus at 10q22 associated with clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients in Japanese. Hum Mol Genet 2012; 21: 1665–1672.

    CAS  PubMed  Google Scholar 

  76. Schroth W, Antoniadou L, Fritz P, Schwab M, Muerdter T, Zanger UM et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 2007; 25: 5187–5193.

    CAS  PubMed  Google Scholar 

  77. Moyer AM, Suman VJ, Weinshilboum RM, Avula R, Black JL, Safgren SL et al. SULT1A1, CYP2C19 and disease-free survival in early breast cancer patients receiving tamoxifen. Pharmacogenomics 2011; 12: 1535–1543.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. van Schaik RH, Kok M, Sweep FC, van Vliet M, van Fessem M, Meijer-van Gelder ME et al. The CYP2C19*2 genotype predicts tamoxifen treatment outcome in advanced breast cancer patients. Pharmacogenomics 2011; 12: 1137–1146.

    CAS  PubMed  Google Scholar 

  79. Tozzi V . Pharmacogenetics of antiretrovirals. Antiviral Res 2010; 85: 190–200.

    CAS  PubMed  Google Scholar 

  80. Saitoh A, Sarles E, Capparelli E, Aweeka F, Kovacs A, Burchett SK et al. CYP2B6 genetic variants are associated with nevirapine pharmacokinetics and clinical response in HIV-1-infected children. AIDS 2007; 21: 2191–2199.

    CAS  PubMed  Google Scholar 

  81. Yuan J, Guo S, Hall D, Cammett AM, Jayadev S, Distel M et al. Toxicogenomics of nevirapine-associated cutaneous and hepatic adverse events among populations of African, Asian, and European descent. AIDS 2011; 25: 1271–1280.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wyen C, Hendra H, Siccardi M, Platten M, Jaeger H, Harrer T et al. Cytochrome P450 2B6 (CYP2B6) and constitutive androstane receptor (CAR) polymorphisms are associated with early discontinuation of efavirenz-containing regimens. J Antimicrob Chemother 2011; 66: 2092–2098.

    CAS  PubMed  Google Scholar 

  83. Powers V, Ward J, Gompels M . CYP2B6 G516T genotyping in a UK cohort of HIV-positive patients: polymorphism frequency and influence on efavirenz discontinuation. HIV Med 2009; 10: 520–523.

    PubMed  Google Scholar 

  84. Ribaudo HJ, Liu H, Schwab M, Schaeffeler E, Eichelbaum M, Motsinger-Reif AA et al. Effect of CYP2B6, ABCB1, and CYP3A5 polymorphisms on efavirenz pharmacokinetics and treatment response: an AIDS Clinical Trials Group study. J Infect Dis 2010; 202: 717–722.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rotger M, Colombo S, Furrer H, Bleiber G, Buclin T, Lee BL et al. Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics 2005; 15: 1–5.

    CAS  PubMed  Google Scholar 

  86. Haas DW, Ribaudo HJ, Kim RB, Tierney C, Wilkinson GR, Gulick RM et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. Aids 2004; 18: 2391–2400.

    CAS  PubMed  Google Scholar 

  87. Barry A, Levine M . A systematic review of the effect of CYP3A5 genotype on the apparent oral clearance of tacrolimus in renal transplant recipients. Ther Drug Monit 2010; 32: 708–714.

    CAS  PubMed  Google Scholar 

  88. Tang HL, Xie HG, Yao Y, Hu YF . Lower tacrolimus daily dose requirements and acute rejection rates in the CYP3A5 nonexpressers than expressers. Pharmacogenet Genomics 2011; 21: 713–720.

    CAS  PubMed  Google Scholar 

  89. Rau T, Wohlleben G, Wuttke H, Thuerauf N, Lunkenheimer J, Lanczik M et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study. Clin Pharmacol Ther 2004; 75: 386–393.

    CAS  PubMed  Google Scholar 

  90. Kawanishi C, Lundgren S, Agren H, Bertilsson L . Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol 2004; 59: 803–807.

    CAS  PubMed  Google Scholar 

  91. Lobello KW, Preskorn SH, Guico-Pabia CJ, Jiang Q, Paul J, Nichols AI et al. Cytochrome P450 2D6 phenotype predicts antidepressant efficacy of venlafaxine: a secondary analysis of 4 studies in major depressive disorder. J Clin Psychiatry 2010; 71: 1482–1487.

    CAS  PubMed  Google Scholar 

  92. Tsai MH, Lin KM, Hsiao MC, Shen WW, Lu ML, Tang HS et al. Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics 2010; 11: 537–546.

    CAS  PubMed  Google Scholar 

  93. Penas-Lledo EM, Trejo HD, Dorado P, Ortega A, Jung H, Alonso E et al. CYP2D6 ultrarapid metabolism and early dropout from fluoxetine or amitriptyline monotherapy treatment in major depressive patients. Mol Psychiatry, advance online publication, 26 January 2012 (e-pub ahead of print).

  94. Peters EJ, Slager SL, Kraft JB, Jenkins GD, Reinalda MS, McGrath PJ et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PloS One 2008; 3: e1872.

    PubMed  PubMed Central  Google Scholar 

  95. Gex-Fabry M, Eap CB, Oneda B, Gervasoni N, Aubry JM, Bondolfi G et al. CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Ther Drug Monit 2008; 30: 474–482.

    CAS  PubMed  Google Scholar 

  96. Serretti A, Calati R, Massat I, Linotte S, Kasper S, Lecrubier Y et al. Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes are not associated with response and remission in a sample of depressive patients. Int Clin Psychopharmacol 2009; 24: 250–256.

    PubMed  Google Scholar 

  97. Penas-Lledo EM, Blasco-Fontecilla H, Dorado P, Vaquero-Lorenzo C, Baca-Garcia E, Llerena A . CYP2D6 and the severity of suicide attempts. Pharmacogenomics 2012; 13: 179–184.

    CAS  PubMed  Google Scholar 

  98. Penas-Lledo EM, Dorado P, Aguera Z, Gratacos M, Estivill X, Fernandez-Aranda F et al. High risk of lifetime history of suicide attempts among CYP2D6 ultrarapid metabolizers with eating disorders. Mol Psychiatry 2011; 16: 691–692.

    CAS  PubMed  Google Scholar 

  99. Stingl JC, Viviani R . CYP2D6 in the brain: impact on suicidality. Clin Pharmacol Ther 2011; 89: 352–353.

    CAS  PubMed  Google Scholar 

  100. Zackrisson AL, Lindblom B, Ahlner J . High frequency of occurrence of CYP2D6 gene duplication/multiduplication indicating ultrarapid metabolism among suicide cases. Clin Pharmacol Ther 2010; 88: 354–359.

    CAS  PubMed  Google Scholar 

  101. Huezo-Diaz P, Perroud N, Spencer EP, Smith R, Sim S, Virding S et al. CYP2C19 genotype predicts steady state escitalopram concentration in GENDEP. J Psychopharmacol 2012; 26: 398–407.

    CAS  PubMed  Google Scholar 

  102. Rudberg I, Hermann M, Refsum H, Molden E . Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients. Eur J Clin Pharmacol 2008; 64: 1181–1188.

    CAS  PubMed  Google Scholar 

  103. Sim SC, Nordin L, Andersson TM, Virding S, Olsson M, Pedersen NL et al. Association between CYP2C19 polymorphism and depressive symptoms. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1160–1166.

    CAS  PubMed  Google Scholar 

  104. Mrazek DA, Biernacka JM, O'Kane DJ, Black JL, Cunningham JM, Drews MS et al. CYP2C19 variation and citalopram response. Pharmacogenet Genomics 2011; 21: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Crews KR, Gaedigk A, Dunnenberger HM, Klein TE, Shen DD, Callaghan JT et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther 2012; 91: 321–326.

    CAS  PubMed  Google Scholar 

  106. Sistonen J, Madadi P, Ross CJ, Yazdanpanah M, Lee JW, Landsmeer ML et al. Prediction of codeine toxicity in infants and their mothers using a novel combination of maternal genetic markers. Clin Pharmacol Ther 2012; 91: 692–699.

    CAS  PubMed  Google Scholar 

  107. Dorado P, Penas-Lledo EM, Llerena A . CYP2D6 polymorphism: implications for antipsychotic drug response, schizophrenia and personality traits. Pharmacogenomics 2007; 8: 1597–1608.

    CAS  PubMed  Google Scholar 

  108. Kirchheiner J, Seeringer A, Godoy AL, Ohmle B, Maier C, Beschoner P et al. CYP2D6 in the brain: genotype effects on resting brain perfusion. Mol Psychiatry 2011; 16: 237 333-241.

    CAS  PubMed  Google Scholar 

  109. Stingl JC, Esslinger C, Tost H, Bilek E, Kirsch P, Ohmle B et al. Genetic variation in CYP2D6 impacts neural activation during cognitive tasks in humans. Neuroimage 2012; 59: 2818–2823.

    CAS  PubMed  Google Scholar 

  110. Joffe H, Deckersbach T, Lin NU, Makris N, Skaar TC, Rauch SL et al. Metabolic activity in the insular cortex and hypothalamus predicts hot flashes: an FDG-PET Study. J Clin Endocrinol Metab 2012; 97: 3207–3215.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Agundez JA, Garcia-Martin E, Martinez C . Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin Drug Metab Toxicol 2009; 5: 607–620.

    CAS  PubMed  Google Scholar 

  112. Estany-Gestal A, Salgado-Barreira A, Sanchez-Diz P, Figueiras A . Influence of CYP2C9 genetic variants on gastrointestinal bleeding associated with nonsteroidal anti-inflammatory drugs: a systematic critical review. Pharmacogenet Genomics 2011; 21: 357–364.

    CAS  PubMed  Google Scholar 

  113. Hu ZY, Yu Q, Pei Q, Guo C . Dose-dependent association between UGT1A1*28 genotype and irinotecan-induced neutropenia: low doses also increase risk. Clin Cancer Res 2010; 16: 3832–3842.

    CAS  PubMed  Google Scholar 

  114. Strassburg CP . Hyperbilirubinemia syndromes (Gilbert-Meulengracht, Crigler-Najjar, Dubin-Johnson, and Rotor syndrome). Best Pract Res Clin Gastroenterol 2010; 24: 555–571.

    CAS  PubMed  Google Scholar 

  115. Sanna S, Busonero F, Maschio A, McArdle PF, Usala G, Dei M et al. Common variants in the SLCO1B3 locus are associated with bilirubin levels and unconjugated hyperbilirubinemia. Hum Mol Genet 2009; 18: 2711–2718.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Johnson AD, Kavousi M, Smith AV, Chen MH, Dehghan A, Aspelund T et al. Genome-wide association meta-analysis for total serum bilirubin levels. Hum Mol Genet 2009; 18: 2700–2710.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen G, Ramos E, Adeyemo A, Shriner D, Zhou J, Doumatey AP et al. UGT1A1 is a major locus influencing bilirubin levels in African Americans. Eur J Hum Genet 2012; 20: 463–468.

    CAS  PubMed  Google Scholar 

  118. Fujiwara R, Nguyen N, Chen S, Tukey RH . Developmental hyperbilirubinemia and CNS toxicity in mice humanized with the UDP glucuronosyltransferase 1 (UGT1) locus. Proc Nat Acad Sci Usa 2010; 107: 5024–5029.

    CAS  PubMed  Google Scholar 

  119. Booth RA, Ansari MT, Loit E, Tricco AC, Weeks L, Doucette S et al. Assessment of thiopurine S-methyltransferase activity in patients prescribed thiopurines: a systematic review. Ann Intern Med 2011; 154: 814–823, W-295-818.

    PubMed  Google Scholar 

Download references

Acknowledgements

The work in our laboratory is supported by grants from The Swedish Research Council, IMI, Colipa, and EU-FP7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S C Sim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sim, S., Kacevska, M. & Ingelman-Sundberg, M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J 13, 1–11 (2013). https://doi.org/10.1038/tpj.2012.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.45

Keywords

This article is cited by

Search

Quick links