Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Heterozygosity for p53 promotes microsatellite instability and tumorigenesis on a Msh2 deficient background

Abstract

In colorectal tumorigenesis, loss of function of the mismatch repair genes is closely associated with genomic instability at the nucleotide level whereas p53 deficiency has been linked with gross chromosomal instability. We have addressed the contribution of these two forms of genetic instability to tumorigenesis using mice mutant for Msh2 and p53. As previously reported, deficiency of both genes leads to rapid lymphomagenesis Here we show that heterozygosity for p53 also markedly reduces survival on an Msh2 null background. We characterized the patterns of genomic instability in a small set of tumours and showed that, as predicted p53 deficiency predisposes to aneuploidy and Msh2 deficiency leads to microsatellite instability (MSI). However, heterozygosity for p53 in the absence of Msh2 resulted in increased MSI and not aneuploidy. This implied role for p53 in modulating MSI was confirmed using a large cohort of primary fibroblast clones. The differences observed were highly significant (P<0.01) in both the fibroblast clones (which all retained p53 functionality) and the tumours, a proportion of which retained p53 functionality. Our results therefore demonstrate a dose sensitive role for p53 in the maintenance of genomic integrity at the nucleotide level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR . 1995 Curr. Biol. 5: 931–936

  • Bouffler SD, Kemp CJ, Balmain A, Cox R . 1995 Cancer Res. 55: 3883–3889

  • Bubb VJ, Curtis LJ, Cunningham C, Dunlop MG, Carothers AD, Morris RG, White S, Bird CC, Wyllie AH . 1996 Oncogene 12: 2641–2649

  • Carder PJ, Wyllie AH, Purdie CA, Morris RG, White S, Piris J, Bird CC . 1993 Oncogene 8: 1397–1401

  • Chao C, Saito S, Kang J, Anderson CW, Appella E, Xu Y . 2000 EMBO J. 19: 4967–4975

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH . 1993 Nature 362: 849–852

  • Clarke AR, Gledhill S, Hooper ML, Bird CC, Wyllie AH . 1994 Oncogene 9: 1767–1773

  • Clarke AR, Cummings MC, Harrison DJ . 1995 Oncogene 11: 1913–1920

  • Clarke AR, Howard LA, Harrison DJ, Winton DJ . 1997 Oncogene 14: 2015–2018

  • Cottu PH, Muzeau F, Estreicher A, Flejou J-F, Iggo R, Thomas G, Hamelin R . 1996 Oncogene 13: 2727–2730

  • Cranston A, Bocker T, Reitmair A, Palazzo J, Wilson T, Mak T, Fishel R . 1997 Nature Genet 17: 114–118

  • Cranston A, Fishel R . 1999 Mamm. Genome 10: 1020–1022

  • Degtyareva N, Subramanian D, Griffith JD . 2001 J. Biol. Chem. 276: 8778–8784

  • de Wind N, Dekker M, Berns A, Radman M, te Riele H . 1995 Cell 82: 321–330

  • Duckett DR, Bronstein SM, Taya Y, Modrich P . 1999 Proc. Natl. Acad. Sci. USA 96: 12384–12388

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS, Bradley A . 1992 Nature 356: 215–221

  • Dudenhoffer C, Rohaly G, Will K, Deppert W, Wiesmuller L . 1998 Mol. Cell. Biol. 18: 5332–5342

  • Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG, Levrero M, Wang JYJ . 1999 Nature 399: 806–809

  • Hartwell L . 1992 Cell 71: 543–546

  • Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P, Giovanella BC, Tainsky MA, Bradley A, Donehower LA . 1993 Oncogene 8: 2457–2467

  • Hawn MT, Umar A, Carethers JM, Marra G, Kunkel TA, Boland CR, Koi M . 1995 Cancer Res. 55: 3721–3725

  • Jimenez GS, Nister M, Stommel JM, Beeche M, Barcase ER, Zhang X-Q, O'Gorman S, Wahl G . 2000 Nature Gen. 26: 37–43

  • Kallioniemi OP, Kallioniemi A, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D . 1992 Semin. Cancer Biol. 4: 41–46

  • Kolodner RD . 1995 Trends Biochem. Sci. 20: 397–401

  • Lee S, Elenbaas B, Levine A, Griffith J . 1995 Cell 81: 1013–1020

  • Lengauer C, Kinzler KW, Vogelstein B . 1997 Nature 386: 623–627

  • Liu B, Nicolaides NC, Markowitz S, Willson JK, Parsons RE, Jen J, Papadopoulos N, Peltomaki P, de la Chapelle A, Hamilton SR, Vogelstein B, Kinzler KW . 1995 Nature Genet. 9: 48–55

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T . 1993 Nature 362: 847–849

  • Mummenbrauer T, Janus F, Muller B, Wiesmuller L, Deppert W, Grosse F . 1996 Cell 85: 1089–1099

  • Ozbun MA, Jerry J, Kittrell FS, Medina D, Butel JS . 1993 Cancer Res. 53: 1646–1652

  • Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SE, Salter DM, Bird CC, Wyllie AH, Hooper ML . 1994 Oncogene 9: 603–609

  • Rafferty JA, Clarke AR, Sellapan D, Koref MS, Frayling IM, Margison GP . 1996 Oncogene 12: 693–697

  • Reichmann A, Martin P, Levin B . 1981 Int. J. Cancer 28: 431–440

  • Reitmair AH, Schmits R, Ewel A, Bapat B, Redston M, Mitri A, Waterhouse P, Mittrucker HW, Wakeham A, Liu B, Thomason A, Griesser H, Gallinger S, Ballhausen WG, Fishel R, Mak TW . 1995 Nature Genet 11: 64–70

  • Reitmair AH, Redston M, Cai JC, Chuang TC, Bjerknes M, Cheng H, Hay K, Gallinger S, Bapat B, Mak TW . 1996 Cancer Res. 56: 3842–3849

  • Sansom OJ, Clarke AR . 2000 Mut. Res. Fund. Mol. Mechan. Mutagen. 452: 149–162

  • Sansom OJ, Toft NJ, Winton DJ, Clarke AR . 2001 Oncogene 20: 3580–3584

  • Shoemaker AR, Haigis KM, Baker SM, Dudley S, Liskay RM, Dove WF . 2000 Oncogene 19: 2774–2779

  • Toft NJ, Arends MJ, Wyllie AH, Clarke AR . 1998 Nature Genet. 18: 17

  • Toft NJ, Winton DJ, Kelly J, Howard LA, Dekker M, Riele HT, Arends MJ, Wyllie AH, Margison GP, Clarke AR . 1999 Proc. Natl. Acad. USA 96: 3911–3915

  • Venkatachalam S, Shi YP, Jones SN, Vogel H, Bradley A, Pinkel D, Donehower LA . 1998 EMBO J. 17: 4657–4667

  • Vindelov LL, Christensen IJ, Nissen NI . 1983 Cytometry 3: 323–327

  • Vogelstein B, Kinzler KW . 1992 Cell 70: 523–526

  • Vogelstein B, Kinzler KW . 1993 Trends Genet. 9: 138–141

  • Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM . 1992 Cell 70: 937–948

Download references

Acknowledgements

We thank John Verth and his staff for animal care, Jennifer Doig for technical assistance and Nathalie Sphyris for help with the p53 immunohistochemistry and EMSA. This work was supported by grants from the Cancer Research Campaign. NJ Toft is a Leckie-Mactier Research Fellow supported by the Faculty of Medicine, University of Edinburgh. AR Clarke is a Royal Society Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toft, N., Curtis, L., Sansom, O. et al. Heterozygosity for p53 promotes microsatellite instability and tumorigenesis on a Msh2 deficient background. Oncogene 21, 6299–6306 (2002). https://doi.org/10.1038/sj.onc.1205727

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205727

Keywords

This article is cited by

Search

Quick links