Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF)

Abstract

The neuregulin-1 gene (NRG1) at chromosome 8p21–22 has been implicated as a schizophrenia susceptibility gene in Icelandic, Scottish, Irish and mixed UK populations. The shared ancestry between these populations led us to investigate the NRG1 polymorphisms and appropriate marker haplotypes for linkage and/or association to schizophrenia in the Irish study of high-density schizophrenia families (ISHDSF). Neither single-point nor multi-point linkage analysis of NRG1 markers gave evidence for linkage independent of our pre-existing findings telomeric on 8p. Analysis of linkage disequilibrium (LD) across the 252 kb interval encompassing the 7 marker core Icelandic/Scottish NRG1 haplotype revealed two separate regions of modest LD, comprising markers SNP8NRG255133, SNP8NRG249130 and SNP8NRG243177 (telomeric) and microsatellites 478B14-428, 420M9-1395, D8S1810 and 420M9-116I12 (centromeric). From single marker analysis by TRANSMIT and FBAT we found no evidence for association with schizophrenia for any marker. Haplotype analysis for the three SNPs in LD region 1 and, separately, the four microsatellites in LD region 2 (analyzed in overlapping 2-marker windows), showed no evidence for overtransmission of specific haplotypes to affected individuals. We therefore conclude that if NRG1 does contain susceptibility alleles for schizophrenia, they impact quite weakly on risk in the ISHDSF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Riley B, Kendler KS . Schizophrenia: genetic epidemiology. In: Sadock BJ, Sadock VA (eds). Kaplan and Sadock's Comprehensive Textbook of Psychiatry, 8th edn. Lipincott, Williams and Wilkins: New York, in press.

  2. Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet 1995; 60: 252–260.

    Article  CAS  PubMed  Google Scholar 

  3. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  PubMed  Google Scholar 

  4. Brzustowicz LM, Honer WG, Chow EW, Little D, Hogan J, Hodgkinson K et al. Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet 1999; 65: 1096–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Hum Genet 2001; 68: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  7. Webb BT, Wormley BR, Jiang Y, Straub RE, O'Neill FA, Walsh D et al. Linkage and association in the Irish study of high-density schizophrenia families indicate multiple schizophrenia susceptibility loci on chromosome 8. Neuropsychiatric Genet, in press.

  8. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Straub RE, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C et al. Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Mol Psychiatry 2002; 7: 542–559.

    Article  CAS  PubMed  Google Scholar 

  10. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, Part II: Schizophrenia. Am J Hum Genet 2002; 73: 34–48.

    Article  Google Scholar 

  11. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  PubMed  Google Scholar 

  12. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S et al. Support for genetic variation in neuregulin-1 and susceptibility to schizophrenia. Mol Psychiatry 2003; 8: 485–487.

    Article  CAS  PubMed  Google Scholar 

  13. Buonanno A, Fischbach GD . Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 2001; 11: 28–96.

    Article  Google Scholar 

  14. Corvin AP, Morris DW, McGhee K, Schwaiger S, Scully P, Quinn J et al. Confirmation and refinement of an ‘at-risk’ haplotype for schizophrenia suggests the EST cluster, Hs. 97632, as a potential susceptibility gene at the Neuregulin-1 locus. Mol Psychiatry 2004; 9: 208–213.

    Article  CAS  PubMed  Google Scholar 

  15. Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish study of high-density schizophrenia families. Am J Psychiatry 1996; 153: 1534–1540.

    Article  CAS  PubMed  Google Scholar 

  16. Cavalli-Sforza LL, Menozzi P, Piazza A . The History and Geography of Human Genes. Princeton University Press: New Jersey, 1994.

    Google Scholar 

  17. Straub RE, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C et al. Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Mol Psychiatry 2002; 7: 542–559.

    Article  CAS  PubMed  Google Scholar 

  18. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ et al. Linkage diequilibrium in the human genome. Nature 2001; 411: 199–204.

    Article  CAS  PubMed  Google Scholar 

  19. Clayton D . A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 1999; 65: 1170–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rabinowitz D, Laird N . A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 2000; 50: 211–223.

    Article  CAS  PubMed  Google Scholar 

  21. Sobel E, Lange K . Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker sharing statistics. Am J Hum Genet 1996; 58: 1323–1337.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Van den Oord EJCG, Jiang Y, Riley BP, Kendler KS, Chen X . FP-TDI SNP genotype scoring by manual and statistical procedures: a study of error rates and types. Biotechniques 2003; 34: 610–624.

    Article  CAS  PubMed  Google Scholar 

  23. Weiss KM, Clark AG . Linkage disequilibrium and the mapping of complex human traits. Trends Genet 2002; 18: 19–24.

    Article  CAS  PubMed  Google Scholar 

  24. Purcell S, Cherny SS, Sham PC . Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149–150.

    Article  CAS  PubMed  Google Scholar 

  25. Durner M, Greenberg DA, Hodge SE . Inter- and intrafamilial heterogeneity: effective sampling strategies and comparison of analysis methods. Am J Hum Genet 1992; 51: 859–870.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kendler KS, O'Neill FA, Burke J, Murphy B, Duke F, Straub RE et al. Irish study on high-density schizophrenia families: field methods and power to detect linkage. Am J Med Genet 1996; 67: 179–190.

    Article  CAS  PubMed  Google Scholar 

  27. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  29. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge all families participating in this study. We also thank Michael Gill and coworkers for access to their NRG1 association data prior to publication.14 This work was supported by NIH Grants No. MH-41953 and MH-45390.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L Thiselton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiselton, D., Webb, B., Neale, B. et al. No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Mol Psychiatry 9, 777–783 (2004). https://doi.org/10.1038/sj.mp.4001530

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001530

Keywords

This article is cited by

Search

Quick links