Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis

Abstract

Using microRNA (miRNA) expression array, we identified that miR-7 was deregulated in colorectal cancer (CRC). We studied the biological role and molecular target of miR-7 in CRC. miR-7 was downregulated in six out of seven colon cancer cell lines. Ectopic expression of miR-7 suppressed colon cancer cell proliferation (P<0.05), induced apoptosis (P<0.05) and caused cell-cycle arrest in G1 phase (P<0.05). The tumor suppressive function of miR-7 was further confirmed in nude mice (P<0.05). The 3′-untranslated region (3′UTR) of Yin Yang 1 (YY1) mRNA contains an evolutionarily conserved miR-7 binding site using in silico searches, luciferase reporter assay and western blot analysis confirmed that miR-7 directly bound to YY1 3′UTR to negatively regulate the protein expression of YY1 in colon cancer cell lines HCT116 and LOVO. Intriguingly, knock-down of YY1 in three colon cancer cell lines (HCT116, LOVO and DLD1) consistently suppressed cell proliferation (P<0.01) and induced apoptosis (P<0.01), indicating the opposite functions of miR-7 and YY1 in CRC. Consistent with these data, ectopic expression of YY1 promoted cell growth by increasing proliferation (P<0.01) and suppressing apoptosis (P<0.001). The tumorigenic ability of YY1 was further confirmed in vivo in xenograft-nude mouse model (P<0.01). In addition, pathway analyses revealed that the oncogenic effect by YY1 was associated with inhibiting p53 and modulating its downstream effectors p15, caspase cascades and C-Jun, and activating Wnt signaling pathway through activating β-catenin, anti-apoptotic survivin and fibroblast growth factor 4. Furthermore, multivariate analysis revealed that patients with YY1 protein high expression had a significant decrease in overall survival, and Kaplan–Meier survival curves showed that these patients had significantly shorter survival than others (P<0.0001). In conclusion, MiR-7 is a novel miRNA with tumor suppressive function in colon cancer by targeting oncogenic YY1. YY1 promotes colon cancer growth through inhibiting p53 and promoting Wnt signaling pathways and serves as an independent prognostic biomarker for CRC patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B et al. Colorectal cancer. Lancet 2010; 375: 1030–1047.

    Article  PubMed  Google Scholar 

  2. Pritchard CC, Grady WM . Colorectal cancer molecular biology moves into clinical practice. Gut 2011; 60: 116–129.

    Article  CAS  PubMed  Google Scholar 

  3. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D . Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 2009; 9: 489–499.

    Article  CAS  PubMed  Google Scholar 

  4. Wu WK, Law PT, Lee CW, Cho CH, Fan D, Wu K et al. MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis 2011; 32: 247–253.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  6. Nugent M, Miller N, Kerin MJ . MicroRNAs in colorectal cancer: function, dysregulation and potential as novel biomarkers. Eur J Surg Oncol 2011; 37: 649–654.

    Article  CAS  PubMed  Google Scholar 

  7. Wu CW, Ng SS, Dong YJ, Ng SC, Leung WW, Lee CW et al. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut 2012; 61: 739–745.

    Article  CAS  PubMed  Google Scholar 

  8. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 2009; 58: 1375–1381.

    Article  CAS  PubMed  Google Scholar 

  9. Akao Y, Nakagawa Y, Naoe T . let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 2006; 29: 903–906.

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 2009; 28: 1385–1392.

    Article  CAS  PubMed  Google Scholar 

  11. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H . Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 2007; 104: 15472–15477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 2010; 70: 6609–6618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJ et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 2009; 69: 8157–8165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Markowitz SD, Bertagnolli MM . Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 2009; 361: 2449–2460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68: 3566–3572.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang L, Liu X, Chen Z, Jin Y, Heidbreder CE, Kolokythas A et al. MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 2010; 432: 199–205.

    Article  CAS  PubMed  Google Scholar 

  17. Reddy SD, Ohshiro K, Rayala SK, Kumar R . MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 2008; 68: 8195–8200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Begon DY, Delacroix L, Vernimmen D, Jackers P, Winkler R . Yin Yang 1 cooperates with activator protein 2 to stimulate ERBB2 gene expression in mammary cancer cells. J Biol Chem 2005; 280: 24428–24434.

    Article  CAS  PubMed  Google Scholar 

  19. Seligson D, Horvath S, Huerta-Yepez S, Hanna S, Garban H, Roberts A et al. Expression of transcription factor Yin Yang 1 in prostate cancer. Int J Oncol 2005; 27: 131–141.

    CAS  PubMed  Google Scholar 

  20. Baritaki S, Sifakis S, Huerta-Yepez S, Neonakis IK, Soufla G, Bonavida B et al. Overexpression of VEGF and TGF-beta1 mRNA in Pap smears correlates with progression of cervical intraepithelial neoplasia to cancer: implication of YY1 in cervical tumorigenesis and HPV infection. Int J Oncol 2007; 31: 69–79.

    CAS  PubMed  Google Scholar 

  21. May M, Dong XP, Beyer-Finkler E, Stubenrauch F, Fuchs PG, Pfister H . The E6/E7 promoter of extrachromosomal HPV16 DNA in cervical cancers escapes from cellular repression by mutation of target sequences for YY1. EMBO J 1994; 13: 1460–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong XP, Stubenrauch F, Beyer-Finkler E, Pfister H . Prevalence of deletions of YY1-binding sites in episomal HPV 16 DNA from cervical cancers. Int J Cancer 1994; 58: 803–808.

    Article  CAS  PubMed  Google Scholar 

  23. Evan GI, Vousden KH . Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411: 342–348.

    Article  CAS  PubMed  Google Scholar 

  24. Pan H, Yin C, Dyson NJ, Harlow E, Yamasaki L, Van Dyke T . Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol Cell 1998; 2: 283–292.

    Article  CAS  PubMed  Google Scholar 

  25. Wieler S, Gagne JP, Vaziri H, Poirier GG, Benchimol S . Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J Biol Chem 2003; 278: 18914–18921.

    Article  CAS  PubMed  Google Scholar 

  26. Schreiber M, Kolbus A, Piu F, Szabowski A, Mohle-Steinlein U, Tian J et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 1999; 13: 607–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leu JI, Dumont P, Hafey M, Murphy ME, George DL . Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 2004; 6: 443–450.

    Article  CAS  PubMed  Google Scholar 

  28. Kimura Y, Furuhata T, Urano T, Hirata K, Nakamura Y, Tokino T . Genomic structure and chromosomal localization of GML (GPI-anchored molecule-like protein), a gene induced by p53. Genomics 1997; 41: 477–480.

    Article  CAS  PubMed  Google Scholar 

  29. Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR . p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 2000; 275: 7337–7342.

    Article  CAS  PubMed  Google Scholar 

  30. Sui G, Affar el B, Shi Y, Brignone C, Wall NR, Yin P et al. Yin Yang 1 is a negative regulator of p53. Cell 2004; 117: 859–872.

    Article  CAS  PubMed  Google Scholar 

  31. Gronroos E, Terentiev AA, Punga T, Ericsson J . YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc Natl Acad Sci USA 2004; 101: 12165–12170.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nat Chem Biol 2010; 6: 829–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y et al. Inhibition of Wnt signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev 2000; 14: 1741–1749.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bodine PV, Zhao W, Kharode YP, Bex FJ, Lambert AJ, Goad MB et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol 2004; 18: 1222–1237.

    Article  CAS  PubMed  Google Scholar 

  35. Dale TC . Signal transduction by the Wnt family of ligands. Biochem J 1998; 329: (Part 2): 209–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yokoyama NN, Pate KT, Sprowl S, Waterman ML . A role for YY1 in repression of dominant negative LEF-1 expression in colon cancer. Nucleic Acids Res 2010; 38: 6375–6388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ambrosini G, Adida C, Altieri DC . A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997; 3: 917–921.

    Article  CAS  PubMed  Google Scholar 

  38. Buckland RA, Collinson JM, Graham E, Davidson DR, Hill RE . Antagonistic effects of FGF4 on BMP induction of apoptosis and chondrogenesis in the chick limb bud. Mech Dev 1998; 71: 143–150.

    Article  CAS  PubMed  Google Scholar 

  39. Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, Mathieu YD et al. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 2002; 3: 1102–1108.

    Article  CAS  PubMed  Google Scholar 

  40. Su DM, Navarre S, Oh WJ, Condie BG, Manley NR . A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation. Nat Immunol 2003; 4: 1128–1135.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by National High-tech R&D Program of China (863 program, 2012AA02A203; 863 program, 2012AA02A506), Innovation and Technology Fund Hong Kong (ITS/276/11), CUHK direct grant (2010.1.085) and National Natural Science Foundation of China (81072048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Chen or J Yu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

NZ performed experiments, analyzed data and drafted the manuscript; XL, CWW and YD contributed to acquisition of data and technical support; JC, SSMN and MC provided material support; MTSM wrote the paper; MC and JJYS commented on the study. JY designed, supervised study and wrote the paper.

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Li, X., Wu, C. et al. microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene 32, 5078–5088 (2013). https://doi.org/10.1038/onc.2012.526

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.526

Keywords

This article is cited by

Search

Quick links