Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis

Abstract

Outer and inner dynein arms generate force for the flagellar/ciliary bending motion. Although nucleotide-induced structural change of dynein heavy chains (the ATP-driven motor) was proven in vitro, our lack of knowledge in situ has precluded an understanding of the bending mechanism. Here we reveal nucleotide-induced global structural changes of the outer and inner dynein arms of Chlamydomonas reinhardtii flagella in situ using electron cryotomography. The ATPase domains of the dynein heavy chains move toward the distal end, and the N-terminal tail bends sharply during product release. This motion could drive the adjacent microtubule to cause a sliding motion. In contrast to in vitro results, in the presence of nucleotides, outer dynein arms coexist as clusters of apo or nucleotide-bound forms in situ. This implies a cooperative switching, which may be related to the mechanism of bending.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of a flagellum and dynein arms.
Figure 2: ODA 3D structure of in situ in the presence and absence of nucleotides.
Figure 3: Surface rendering representations of IDAs and ODAs as well as other components on A-microtubules averaged from tomograms using 96-nm periodicity.
Figure 4: Structure of ODAs revealed by electron cryotomography and image averaging based on 24-nm periodicity.
Figure 5: The orientation and conformation of the N-terminal tails and stalks of ODA.
Figure 6: Linear arrangement of ODAs along microtubules in the presence of ADP.Vi as revealed by 3D image classifications.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

References

  1. Goodenough, U.W. & Heuser, J. Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella. J. Cell Biol. 100, 2008–2018 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Piperno, G., Ramanis, Z., Smith, E.F. & Sale, W.S. Three distinct inner dynein arms in Chlamydomonas flagella: molecular composition and location in the axoneme. J. Cell Biol. 110, 379–389 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Porter, M.E. Axonemal dyneins: assembly, organization, and regulation. Curr. Opin. Cell Biol. 8, 10–17 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Kamiya, R. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int. Rev. Cytol. 219, 115–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Bui, K.H., Sakakibara, H., Movassagh, T., Oiwa, K. & Ishikawa, T. Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella. J. Cell Biol. 183, 923–932 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fliegauf, M. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 171, 1343–1349 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  8. Johnson, K.A. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu. Rev. Biophys. Biophys. Chem. 14, 161–188 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Burgess, S.A., Walker, M.L., Sakakibara, H., Knight, P.J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Ishikawa, T., Sakakibara, H. & Oiwa, K. The architecture of outer dynein arms in situ. J. Mol. Biol. 368, 1249–1258 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Lupetti, P. et al. Three-dimensional reconstruction of axonemal outer dynein arms in situ by electron tomography. Cell Motil. Cytoskeleton 62, 69–83 (2005).

    Article  PubMed  Google Scholar 

  12. Nicastro, D. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, 944–948 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Porter, M.E., Knott, J.A., Myster, S.H. & Farlow, S.J. The dynein gene family in Chlamydomonas reinhardtii. Genetics 144, 569–585 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ueno, H., Yasunaga, T., Shingyoji, C. & Hirose, K. Dynein pulls microtubules without rotating its stalk. Proc. Natl. Acad. Sci. USA 105, 19702–19707 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burgess, S.A., Walker, M.L., Sakakibara, H., Oiwa, K. & Knight, P.J. The structure of dynein-c by negative stain electron microscopy. J. Struct. Biol. 146, 205–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Carter, A.P. et al. Structure and functional role of dynein′s microtubule-binding domain. Science 322, 1691–1695 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gibbons, B.H. & Gibbons, I.R. Properties of flagellar “rigor waves” formed by abrupt removal of adenosine triphosphate from actively swimming sea urchin sperm. J. Cell Biol. 63, 970–985 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bui, K.H., Sakakibara, H., Movassagh, T., Oiwa, K. & Ishikawa, T. Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella. J. Cell Biol. 186, 437–446 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roberts, A.J. et al. AAA+ ring and linker swing mechanism in the dynein motor. Cell 136, 485–495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gibbons, I.R. Dynein family of motor proteins: present status and future questions. Cell Motil. Cytoskeleton 32, 136–144 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Sakato, M., Sakakibara, H. & King, S.M. Chlamydomonas outer arm dynein alters conformation in response to Ca2+. Mol. Biol. Cell 18, 3620–3634 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Furuta, A., Yagi, T., Yanagisawa, H.A., Higuchi, H. & Kamiya, R. Systematic comparison of in vitro motile properties between Chlamydomonas wild-type and mutant outer arm dyneins each lacking one of the three heavy chains. J. Biol. Chem. 284, 5927–5935 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Goodenough, U.W. & Heuser, J.E. Substructure of the outer dynein arm. J. Cell Biol. 95, 798–815 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. Kon, T., Mogami, T., Ohkura, R., Nishiura, M. & Sutoh, K. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nat. Struct. Mol. Biol. 12, 513–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Hook, P. et al. Long range allosteric control of cytoplasmic dynein ATPase activity by the stalk and C-terminal domains. J. Biol. Chem. 280, 33045–33054 (2005).

    Article  PubMed  Google Scholar 

  26. Inoue, Y. & Shingyoji, C. The roles of noncatalytic ATP binding and ADP binding in the regulation of dynein motile activity in flagella. Cell Motil. Cytoskeleton 64, 690–704 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi, Y., Edamatsu, M. & Toyoshima, Y.Y. Multiple ATP-hydrolyzing sites that potentially function in cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 101, 12865–12869 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holzbaur, E.L. & Johnson, K.A. ADP release is rate limiting in steady-state turnover by the dynein adenosinetriphosphatase. Biochemistry 28, 5577–5585 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Holzbaur, E.L. & Johnson, K.A. Microtubules accelerate ADP release by dynein. Biochemistry 28, 7010–7016 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Warner, F.D. & McIlvain, J.H. Kinetic properties of microtubule-activated 13 S and 21 S dynein ATPases. Evidence for allosteric behaviour associated with the inner row and outer row dynein arms. J. Cell Sci. 83, 251–267 (1986).

    CAS  PubMed  Google Scholar 

  31. Seetharam, R.N. & Satir, P. Coordination of outer arm dynein activity along axonemal doublet microtubules. Cell Motil. Cytoskeleton 65, 572–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Haimo, L.T. & Rosenbaum, J.L. Dynein binding to microtubules containing microtubule-associated proteins. Cell Motil. 1, 499–515 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Moss, A.G., Sale, W.S., Fox, L.A. & Witman, G.B. The alpha subunit of sea urchin sperm outer arm dynein mediates structural and rigor binding to microtubules. J. Cell Biol. 118, 1189–1200 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Burgess, S.A. Rigor and relaxed outer dynein arms in replicas of cryofixed motile flagella. J. Mol. Biol. 250, 52–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Mallik, R., Carter, B.C., Lex, S.A., King, S.J. & Gross, S.P. Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649–652 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Ishikawa, R. & Shingyoji, C. Induction of beating by imposed bending or mechanical pulse in demembranated, motionless sea urchin sperm flagella at very low ATP concentrations. Cell Struct. Funct. 32, 17–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Gorman, D.S. & Levine, R.P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 54, 1665–1669 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Witman, G.B. Isolation of Chlamydomonas flagella and flagellar axonemes. Methods Enzymol. 134, 280–290 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Striebel, F. et al. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat. Struct. Mol. Biol. 16, 647–651 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Mastronarde, D.N. Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120, 343–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Heymann, J.B. Bsoft: image and molecular processing in electron microscopy. J. Struct. Biol. 133, 156–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Nickell, S. et al. TOM software toolbox: acquisition and analysis for electron tomography. J. Struct. Biol. 149, 227–234 (2005).

    Article  PubMed  Google Scholar 

  45. Bostina, M. et al. Single particle cryoelectron tomography characterization of the structure and structural variability of poliovirus-receptor-membrane complex at 30 Å resolution. J. Struct. Biol. 160, 200–210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pettersen, E.F. et al. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T.J. Richmond for the biochemical facility, D. Sargent and F. Damberger for critical reading of the manuscript, R. Wepf, P. Tittmann and F. Stribel for technical support, J.A. Parian for support on graphics, V.H. Bui for statistical calculation and S. Burgess for insightful discussion. This work was funded by grants from the Swiss National Science Foundation (NF3100A0-107540 and NF31003A-125131/1), a Swiss-Japan cooperative grant and NCCR Structural Biology to T.I., by Special Coordination Funds for Promoting Science and Technology (16083207 to K.O.) and a Grant-in-Aid for Scientific Research on the Priority Area “Regulation of Nano-systems in Cells” by the Japan Ministry of Education, Culture, Sports, Science and Technology (K.O.).

Author information

Authors and Affiliations

Authors

Contributions

T.I. designed experiments; T.M. and H.S. prepared specimens and performed biochemical experiments; T.M. collected tomography data; K.H.B. developed algorithms of image alignment and classification and made programs; T.M. and K.H.B. performed image analysis of ODAs and IDAs, respectively; the mechanism of the power stroke was discussed by all the authors; the manuscript was written by T.I., T.M., K.O. and K.H.B.

Corresponding author

Correspondence to Takashi Ishikawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–7 (PDF 968 kb)

Supplementary Video 1

Fitting a ring model to the density of the inner arm dynein c at various threshold levels and seen from different view angles (MOV 3126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movassagh, T., Bui, K., Sakakibara, H. et al. Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis. Nat Struct Mol Biol 17, 761–767 (2010). https://doi.org/10.1038/nsmb.1832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing