Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetic basis of mammalian neurulation

Key Points

  • Neurulation is a well-known morphogenetic event of embryonic development that has important clinical consequences. The failure of neural tube closure leads to a group of common and severe malformations that are called neural tube defects (NTDs).

  • Although the morphology and cell biology of neurulation are well described, the underlying molecular mechanisms remain poorly understood.

  • More than 80 mutant mouse genes disrupt neurulation and lead to the development of NTDs. Analysis of these mutants allows an in-depth analysis of the developmental mechanisms that underlie neurulation.

  • This review identifies the main categories of genes that are required for each successive event of neurulation, and relates these functional gene groups to probable neurulation mechanisms.

  • Crucial molecular mechanisms of neurulation include the planar cell-polarity pathway, which is essential for the initiation of neural tube closure, and the sonic hedgehog signalling pathway, which regulates neural plate bending in the spinal region and probably also in the brain.

  • Other developmental mechanisms seem to be essential solely for cranial neurulation. These include contraction of apical actin microfilaments, emigration of the cranial neural crest, precisely regulated programmed cell death and a balance between neuroepithelial cell proliferation and differentiation.

  • The mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents NTDs, and to develop new therapies for folate-resistant defects. NTDs in some mutant mouse strains can be prevented by folic acid, whereas, in one particular strain, folate is ineffective but inositol can prevent NTDs.

Abstract

More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The rostro-caudal sequence of neurulation events in the mouse embryo.
Figure 2: Mouse fetuses with neural tube defects.
Figure 3: Shaping of the neural plate at the onset of mouse neural tube closure.
Figure 4: Transition in the morphology of neurulation along the developing spine, as seen in schematic transverse section.
Figure 5: Adhesion, fusion and remodelling of the midline at completion of neural tube closure.
Figure 6: Schematic summary of cranial neurulation as exemplified by neural tube closure in the midbrain region.

Similar content being viewed by others

References

  1. Schoenwolf, G. C. & Smith, J. L. Mechanisms of neurulation: traditional viewpoint and recent advances. Development 109, 243–270 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Harding, B. N. & Copp, A. J. in Greenfield's Neuropathology 357–483 (Arnold, London, 2002).

    Google Scholar 

  3. Wald, N. et al. Prevention of neural tube defects: results of the Medical Research Council vitamin study. Lancet 338, 131–137 (1991). This is the definitive randomized clinical trial of vitamin supplementation, which showed that folic acid can prevent the recurrence of 70% of neural tube defects.

    Article  Google Scholar 

  4. Colas, J. F. & Schoenwolf, G. C. Towards a cellular and molecular understanding of neurulation. Dev. Dyn. 221, 117–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Knecht, A. K. & Bronner-Fraser, M. Induction of the neural crest: a multigene process. Nature Rev. Genet. 3, 453–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Juriloff, D. M. & Harris, M. J. Mouse models for neural tube closure defects. Hum. Mol. Genet. 9, 993–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Copp, A. J. & Brook, F. A. Does lumbosacral spina bifida arise by failure of neural folding or by defective canalisation? J. Med. Genet. 26, 160–166 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schoenwolf, G. C. Histological and ultrastructural studies of secondary neurulation of mouse embryos. Am. J. Anat. 169, 361–374 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. O'Rahilly, R. & Müller, F. The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology 65, 162–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Juriloff, D. M., Harris, M. J., Tom, C. & MacDonald, K. B. Normal mouse strains differ in the site of initiation of closure of the cranial neural tube. Teratology 44, 225–233 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Fleming, A. & Copp, A. J. A genetic risk factor for mouse neural tube defects: defining the embryonic basis. Hum. Mol. Genet. 9, 575–581 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Nakatsu, T., Uwabe, C. & Shiota, K. Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat. Embryol. 201, 455–466 (2000).

    Article  CAS  Google Scholar 

  14. Stiefel, D., Shibata, T., Meuli, M., Duffy, P. & Copp, A. J. Tethering of the spinal cord in mouse fetuses and neonates with spina bifida. J. Neurosurg. (in the press).

  15. Jacobson, A. G. & Gordon, R. Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation. J. Exp. Zool. 197, 191–246 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. Schoenwolf, G. C. & Alvarez, I. S. Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate. Development 106, 427–439 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Keller, R. et al. Mechanisms of convergence and extension by cell intercalation. Phil. Trans. Royal Soc. Lond. B 355, 897–922 (2000).

    Article  CAS  Google Scholar 

  18. Curtin, J. A. et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr. Biol. 13, 1–20 (2003).

    Article  CAS  Google Scholar 

  19. Kibar, Z. et al. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant loop-tail. Nature Genet. 28, 251–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Murdoch, J. N., Doudney, K., Paternotte, C., Copp, A. J. & Stanier, P. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum. Mol. Genet. 10, 2593–2601 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Murdoch, J. N. et al. Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum. Mol. Genet. 12, 87–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Montcouquioi, M. et al. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423, 173–177 (2003).

    Article  CAS  Google Scholar 

  23. Hamblet, N. S. et al. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 129, 5827–5838 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Murdoch, J. N. et al. Circletail, a new mouse mutant with severe neural tube defects: chromosomal localisation and interaction with the loop-tail mutation. Genomics 78, 55–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Park, M. & Moon, R. T. The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nature Cell Biol. 4, 20–25 (2001). This was one of the first studies to show a role for the vertebrate homologue of Drosophila strabismus in convergent extension during gastrulation and neurulation.

    Article  CAS  Google Scholar 

  26. Darken, R. S. et al. The planar polarity gene strabismus regulates convergent extension movements in Xenopus. EMBO J. 21, 976–985 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wallingford, J. B. & Harland, R. M. Xenopus Dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis. Development 128, 2581–2592 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Wallingford, J. B. & Harland, R. M. Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development 129, 5815–5825 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Jessen, J. R. et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nature Cell Biol. 4, 610–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Marlow, F., Topczewski, J., Sepich, D. & Solnica-Krezel, L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol. 12, 876–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Greene, N. D. E., Gerrelli, D., Van Straaten, H. W. M. & Copp, A. J. Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: a model of severe neural tube defects. Mech. Dev. 73, 59–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Shum, A. S. W. & Copp, A. J. Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse. Anat. Embryol. 194, 65–73 (1996).

    Article  CAS  Google Scholar 

  33. Ybot-Gonzalez, P., Cogram, P., Gerrelli, D. & Copp, A. J. Sonic hedgehog and the molecular regulation of neural tube closure. Development 129, 2507–2517 (2002). This study produced the first evidence of a role for sonic hedgehog signalling in regulating the pattern of neural plate bending during mouse spinal neurulation.

    Article  CAS  PubMed  Google Scholar 

  34. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Hui, C. & Joyner, A. L. A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nature Genet. 3, 241–246 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Ding, Q. et al. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125, 2533–2543 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Matise, M. P., Epstein, D. J., Park, H. L., Platt, K. A. & Joyner, A. L. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125, 2759–2770 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997). This paper gives a description of the knockout phenotype of the Patched1 gene, including the finding of severe neural tube defects in homozygotes and the development of medulloblastomas, which are important brain tumours of childhood, in heterozygotes.

    Article  CAS  PubMed  Google Scholar 

  39. Huang, Y., Roelink, H. & McKnight, G. S. Protein kinase A deficiency causes axially localized neural tube defects in mice. J. Biol. Chem. 277, 19889–19896 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Günther, T., Struwe, M., Aguzzi, A. & Schughart, K. open brain, a new mouse mutant with severe neural tube defects, shows altered gene expression patterns in the developing spinal cord. Development 120, 3119–3130 (1994).

    Article  PubMed  Google Scholar 

  41. Nagai, T. et al. Zic2 regulates the kinetics of neurulation. Proc. Natl Acad. Sci. USA 97, 1618–1623 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eggenschwiler, J. T., Espinoza, E. & Anderson, K. V. Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412, 194–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Nakata, K., Nagai, T., Aruga, J. & Mikoshiba, K. Xenopus Zic family and its role in neural and neural crest development. Mech. Dev. 75, 43–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Eggenschwiler, J. T. & Anderson, K. V. Dorsal and lateral fates in the mouse neural tube require the cell-autonomous activity of the open brain gene. Dev. Biol. 227, 648–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Smith, J. L. & Schoenwolf, G. C. Role of cell-cycle in regulating neuroepithelial cell shape during bending of the chick neural plate. Cell Tissue Res. 252, 491–500 (1988). This paper describes cell-cycle analysis in chicken neurulation-stage embryos that presented the first evidence for a heterogeneity in the cell-cycle kinetics of different regions of the neural plate. A lengthening of the cell cycle in cells of the median hinge point was described.

    Article  CAS  PubMed  Google Scholar 

  46. Karfunkel, P., Hoffman, M., Phillips, M. & Black, J. Changes in cell adhesiveness in neurulation and optic cup formation. Zoon 6, 23–31 (1978).

    Google Scholar 

  47. Geelen, J. A. G. & Langman, J. Ultrastructural observations on closure of the neural tube in the mouse. Anat. Embryol. 156, 73–88 (1979).

    Article  CAS  Google Scholar 

  48. Moran, D. & Rice, R. W. An ultrastructural examination of the role of cell membrane surface coat material during neurulation. J. Cell Biol. 64, 172–181 (1975).

    Article  CAS  PubMed  Google Scholar 

  49. Sadler, T. W. Distribution of surface coat material on fusing neural folds of mouse embryos during neurulation. Anat. Rec. 191, 345–350 (1978).

    Article  CAS  PubMed  Google Scholar 

  50. O'Shea, K. S. & Kaufman, M. H. Phospholipase C induced neural tube defects in the mouse embryo. Experientia 36, 1217–1219 (1980).

    Article  CAS  PubMed  Google Scholar 

  51. Holmberg, J., Clarke, D. L. & Frisén, J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408, 203–206 (2000). In this study, knockout phenotypes of ephrin-A5 and EphA7 in the mouse show a role for this signalling system in cell adhesion during neurulation, in contrast to the traditional role of these molecules in axon repulsion.

    Article  CAS  PubMed  Google Scholar 

  52. Rutishauser, U. & Jessell, T. M. Cell adhesion molecules in vertebrate neural development. Physiol. Rev. 68, 819–857 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Detrick, R. J., Dickey, D. & Kintner, C. R. The effects of N-cadherin misexpression on morphogenesis in Xenopus embryos. Neuron 4, 493–506 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Fujimori, T., Miyatani, S. & Takeichi, M. Ectopic expression of N-cadherin perturbs histogenesis in Xenopus embryos. Development 110, 97–104 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Levine, E., Lee, C. H., Kintner, C. & Gumbiner, B. M. Selective disruption of E-cadherin function in early Xenopus embryos by a dominant negative mutant. Development 120, 901–909 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Cremer, H. et al. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455–459 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Radice, G. L. et al. Developmental defects in mouse embryos lacking N-cadherin. Dev. Biol. 181, 64–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Copp, A. J., Brook, F. A., Estibeiro, J. P., Shum, A. S. W. & Cockroft, D. L. The embryonic development of mammalian neural tube defects. Prog. Neurobiol. 35, 363–403 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Morriss, G. M. & Solursh, M. Regional differences in mesenchymal cell morphology and glycosaminoglycans in early neural-fold stage rat embryos. J. Embryol. Exp. Morphol. 46, 37–52 (1978).

    CAS  PubMed  Google Scholar 

  60. Morriss-Kay, G. M. Growth and development of pattern in the cranial neural epithelium of rat embryos during neurulation. J. Embryol. Exp. Morphol. 65 (Suppl.), 225–241 (1981).

    PubMed  Google Scholar 

  61. Van Straaten, H. W. M., Hekking, J. W. M., Consten, C. & Copp, A. J. Intrinsic and extrinsic factors in the mechanism of neurulation: effect of curvature of the body axis on closure of the posterior neuropore. Development 117, 1163–1172 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, Z. -F. & Behringer, R. R. twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev. 9, 686–699 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, Q., Behringer, R. R. & De Crombrugghe, B. Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nature Genet. 13, 275–283 (1996). This paper describes the first mouse knockout with a neural tube defect phenotype in which folic acid was shown to prevent the neurulation defect, which provides a parallel with the human situation.

    Article  CAS  PubMed  Google Scholar 

  64. Morriss-Kay, G. M., Tuckett, F. & Solursh, M. The effects of Streptomyces hyaluronidase on tissue organization and cell cycle time in rat embryos. J. Embryol. Exp. Morphol. 98, 59–70 (1986).

    CAS  PubMed  Google Scholar 

  65. Hildebrand, J. D. & Soriano, P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99, 485–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Xu, W. M., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development 125, 327–337 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Stumpo, D. J., Bock, C. B., Tuttle, J. S. & Blackshear, P. J. MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc. Natl Acad. Sci. USA 92, 944–948 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brouns, M. R. et al. The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. Development 127, 4891–4903 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Lanier, L. M. et al. Mena is required for neurulation and commissure formation. Neuron 22, 313–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Koleske, A. J. et al. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21, 1259–1272 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Morriss-Kay, G. M. & Tuckett, F. The role of microfilaments in cranial neurulation in rat embryos: effects of short-term exposure to cytochalasin D. J. Embryol. Exp. Morphol. 88, 333–348 (1985).

    CAS  PubMed  Google Scholar 

  72. Ybot-Gonzalez, P. & Copp, A. J. Bending of the neural plate during mouse spinal neurulation is independent of actin microfilaments. Dev. Dyn. 215, 273–283 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Morriss-Kay, G. & Tan, S. -S. Mapping cranial neural crest cell migration pathways in mammalian embryos. Trends Genet. 3, 257–261 (1987).

    Article  Google Scholar 

  74. Ewart, J. L. et al. Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene. Development 124, 1281–1292 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Morriss-Kay, G. M. & Tuckett, F. Immunohistochemical localisation of chondroitin sulphate proteoglycans and the effects of chondroitinase ABC in 9- to 11-day rat embryos. Development 106, 787–798 (1989).

    Article  CAS  PubMed  Google Scholar 

  76. Erickson, C. A. & Weston, J. A. An SEM analysis of neural crest migration in the mouse. J. Embryol. Exp. Morphol. 74, 97–118 (1983).

    CAS  PubMed  Google Scholar 

  77. Franz, T. Neural tube defects without neural crest defects in Splotch mice. Teratology 46, 599–604 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Estibeiro, J. P., Brook, F. A. & Copp, A. J. Interaction between splotch (Sp) and curly tail (ct) mouse mutants in the embryonic development of neural tube defects. Development 119, 113–121 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Pani, L., Horal, M. & Loeken, M. R. Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: implications for Pax-3-dependent development and tumorigenesis. Genes Dev. 16, 676–680 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilson, D. B. Proliferation in the neural tube of the splotch (Sp) mutant mouse. J. Comp. Neurol. 154, 249–256 (1974).

    Article  CAS  PubMed  Google Scholar 

  81. Morris, G. L. & O'Shea, K. S. Anomalies of neuroepithelial cell associations in the Splotch mutant embryo. Dev. Brain Res. 9, 408–410 (1983).

    Article  Google Scholar 

  82. Schluter, G. Ultrastructural observations on cell necrosis during formation of the neural tube in mouse embryos. Z. Anat. Entwickl. Gesch. 141, 251–264 (1973).

    Article  CAS  Google Scholar 

  83. Lawson, A., Schoenwolf, G. C., England, M. A., Addai, F. K. & Ahima, R. S. Programmed cell death and the morphogenesis of the hindbrain roof plate in the chick embryo. Anat. Embryol. 200, 509–519 (1999).

    Article  CAS  Google Scholar 

  84. Harris, B. S. et al. Forebrain overgrowth (fog): a new mutation in the mouse affecting neural tube development. Teratology 55, 231–240 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Kotch, L. E. & Sulik, K. K. Patterns of ethanol-induced cell death in the developing nervous system of mice; neural fold states through the time of anterior neural tube closure. Int. J. Dev. Neurosci. 10, 273–279 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Jacobson, A. G. & Tam, P. P. L. Cephalic neurulation in the mouse embryo analyzed by SEM and morphometry. Anat. Rec. 203, 375–396 (1982).

    Article  CAS  PubMed  Google Scholar 

  87. Peeters, M. C. E., Shum, A. S. W., Hekking, J. W. M., Copp, A. J. & Van Straaten, H. W. M. Relationship between altered axial curvature and neural tube closure in normal and mutant (curly tail) mouse embryos. Anat. Embryol. 193, 123–130 (1996).

    Article  CAS  Google Scholar 

  88. Weil, M., Jacobson, M. D. & Raff, M. C. Is programmed cell death required for neural tube closure. Curr. Biol. 7, 281–284 (1997). This is the only experimental study to show a role for programmed cell death in neural tube closure. The apoptosis inhibitor Zvad-fmk was shown to prevent cell death in the neural plate and to inhibit neural tube closure in chicken embryos.

    Article  CAS  PubMed  Google Scholar 

  89. Oka, C. et al. Disruption of the mouse RBP-Jκ gene results in early embryonic death. Development 121, 3291–3301 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Ishibashi, M. et al. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9, 3136–3148 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Zhong, W. M. et al. Mouse numb is an essential gene involved in cortical neurogenesis. Proc. Natl Acad. Sci. USA 97, 6844–6849 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hirata, H., Tomita, K., Bessho, Y. & Kageyama, R. Hes1 and Hes3 regulate maintenance of the isthmic organizer and development of the mid/hindbrain. EMBO J. 20, 4454–4466 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lardelli, M., Williams, R., Mitsiadis, T. & Lendahl, U. Expression of the Notch 3 intracellular domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development. Mech. Dev. 59, 177–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Honarpour, N., Gilbert, S. L., Lahn, B. T., Wang, X. D. & Herz, J. Apaf-1 deficiency and neural tube closure defects are found in fog mice. Proc. Natl Acad. Sci. USA 98, 9683–9687 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wilson, D. B. & Center, E. M. The neural cell cycle in the loop-tail (Lp) mutant mouse. J. Embryol. Exp. Morphol. 32, 697–705 (1974).

    Google Scholar 

  96. Wilson, D. B. Cellular proliferation in the exencephalic brain of the mouse embryo. Brain Res. 195, 139–148 (1980). This paper describes a cell-cycle analysis of the persistently open neural folds in the brain of the loop-tail mouse, which showed a lengthened cell cycle, rather than over-proliferation, as is often assumed in exencephaly.

    Article  CAS  PubMed  Google Scholar 

  97. Fleming, A. & Copp, A. J. Embryonic folate metabolism and mouse neural tube defects. Science 280, 2107–2109 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Carter, M., Ulrich, S., Oofuji, Y., Williams, D. A. & Ross, M. E. Crooked tail (Cd) models human folate-responsive neural tube defects. Hum. Mol. Genet. 8, 2199–2204 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Martinez-Barbera, J. P. et al. Folic acid prevents exencephaly in Cited2 deficient mice. Hum. Mol. Genet. 11, 283–293 (2002).

    Article  Google Scholar 

  100. Chen, Z. T. et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum. Mol. Genet. 10, 433–443 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Fujinaga, M. & Baden, J. M. Methionine prevents nitrous oxide-induced teratogenicity in rat embryos grown in culture. Anesthesiology 81, 184–189 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Gu, L. Y., Wu, J. X., Qiu, L., Jennings, C. D. & Li, G. M. Involvement of DNA mismatch repair in folate deficiency-induced apoptosis. J. Nutr. Biochem. 13, 355–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Seller, M. J. in Neural Tube Defects (Ciba Foundation Symposium 181) (eds Bock, G. & Marsh, J.) 161–173 (Wiley & Sons, Chichester, 1994).

    Google Scholar 

  104. Essien, F. B. & Wannberg, S. L. Methionine but not folinic acid or vitamin B-12 alters the frequency of neural tube defects in Axd mutant mice. J. Nutr. 123, 27–34 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Greene, N. D. E. & Copp, A. J. Inositol prevents folate-resistant neural tube defects in the mouse. Nature Med. 3, 60–66 (1997). This study reports a preventive effect of exogenous inositol therapy, both in utero and in cultured embryos, on the development of spinal neural tube defects in a folate-resistant genetic mouse model.

    Article  CAS  PubMed  Google Scholar 

  106. Copp, A. J., Brook, F. A. & Roberts, H. J. A cell-type-specific abnormality of cell proliferation in mutant (curly tail) mouse embryos developing spinal neural tube defects. Development 104, 285–295 (1988).

    Article  CAS  PubMed  Google Scholar 

  107. Smith, J. L. & Schoenwolf, G. C. Neurulation: coming to closure. Trends Neurosci. 20, 510–517 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Imamoto, A. & Soriano, P. Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell 73, 1117–1124 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Copp, A. J. Death before birth: clues from gene knockouts and mutations in the mouse. Trends Genet. 11, 87–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Golden, J. A. & Chernoff, G. F. Intermittent pattern of neural tube closure in two strains of mice. Teratology 47, 73–80 (1993). This was the first study to show that neural tube closure initiates at three distinct locations in the mouse embryo, with an intermittent pattern of subsequent closure. This contradicted the traditional textbook belief that neural tube closure comprises a simple 'zipping up' in both directions from a starting point midway along the body axis.

    Article  CAS  PubMed  Google Scholar 

  111. Copp, A. J. & Bernfield, M. Etiology and pathogenesis of human neural tube defects: insights from mouse models. Curr. Opin. Pediatr. 6, 624–631 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by the Wellcome Trust, the Medical Research Council, the Birth Defects Foundation and Sport Aiding Research in Kids (SPARKS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Copp.

Supplementary information

Related links

Related links

DATABASES

FlyBase

stan

Vang

LocusLink

Abl

Apaf1

ApoB

Arg

Bcl10

Cart1

Casp9

Cdh2

Celsr1

Chuk

Csk

ct

Enah

Gcm1

Gli1

Gli2

Gli3

Hes1

Hes3

Ikbkb

Mapk8

Mapk9

Mdm4

Msx1

Mtr

Ncam

Notch3

Numb

Pax3

Pfn1

Ptc1

Rab23

Scrb1

Shh

Tcof1

Tulp1

Twist

Wnt3a

OMIM

anencephaly

spina bifida

ZFIN

tri

Glossary

ECTODERM

The outer of the three embryonic (germ) layers that gives rise to the entire central nervous system, plus other organs and embryonic structures.

NEURAL CREST

A migratory cell population that arises from the midline of the neural tube, which gives rise to a range of cell types in the developing embryo.

ROSTRAL

The front end of the body axis of the developing embryo.

CAUDAL

The tail end of the body axis of the developing embryo.

TAIL BUD

The population of stem cells at the extreme caudal end of the embryo that contains the progenitor cells for formation of the lowest levels of the body axis.

NEUROPORE

A transient 'hole-like' opening in the neural tube at which neural tube closure is undergoing completion.

PRIMITIVE STREAK

The structure in the gastrulation-stage embryo at which ectoderm to mesoderm transformation occurs, with epithelium to mesenchyme transformation.

NOTOCHORD

The rod-like mesodermal structure that extends the length of the body axis, beneath the neural tube of vertebrate embryos.

SOMITES

Segmented blocks of mesoderm on either side of the neural tube in vertebrate embryos.

ORTHOLOGUE

A gene that is the evolutionary counterpart of a similar gene in another species.

MEDIAN HINGE POINT

(MHP). A single midline bending point in the closing neural tube.

NEURAXIS

The developing central nervous system and its main subdivisions, both in the developing brain (forebrain, midbrain and hindbrain) and the spinal cord (cervical, thoracic, lumbar, sacral and caudal/coccygeal).

DORSOLATERAL HINGE POINT

(DLHP). Paired bending points in the dorsolateral region of the closing neural tube.

EPHRINS

A family of cell-surface ligands that interact with a family of cell-surface receptor tyrosine kinases (Eph receptors), which is implicated in the interaction of cell types and the mediation of chemorepulsion and cell adhesion.

GLYCOSYLPHOSPHATIDYLINOSITOL (GPI) ANCHORS

Inositol-containing linkages that tether some proteins (for example, ephrins) to the cell surface.

PARAXIAL MESODERM

The unsegmented mesoderm of the caudal embryonic region that subsequently becomes segmented into somites.

HYALURONAN

A high molecular weight polysaccharide of repeating N-acetyl glucosamine and glucuronic-acid residues that is included among the proteoglycans (which are proteins that comprise a peptide backbone with abundant glycosaminoglycan side chains), although it does not have a protein backbone.

CHONDROITIN SULPHATE

A glycosaminoglycan of repeating N-acetyl-galactosamine and glucuronic-acid residues that forms part of some proteoglycan molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copp, A., Greene, N. & Murdoch, J. The genetic basis of mammalian neurulation. Nat Rev Genet 4, 784–793 (2003). https://doi.org/10.1038/nrg1181

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing