Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reciprocal relation between VEGF and NO in the regulation of endothelial integrity

Abstract

Balloon angioplasty disrupts the protective endothelial lining of the arterial wall, rendering arteries susceptible to thrombosis and intimal thickening. We show here that vascular endothelial growth factor (VEGF), an endothelial cell mitogen, is upregulated in medial smooth muscle cells of the arterial wall in response to balloon injury. Both protein kinase C (PKC) and tyrosine kinase pp60src mediate augmented VEGF expression. In contrast, nitric oxide (NO) donors inhibit PKC-induced VEGF upregulation by interfering with binding of the transcription factor activator protein-1 (AP-1) to the VEGF promoter. Inhibition of VEGF promoter activation suggests that NO secreted by a restored endothelium functions as the negative feedback mechanism that downregulates VEGF expression to basal levels. Administration of a neutralizing VEGF antibody impaired reendothelialization following balloon injury performed in vivo. These findings establish a reciprocal relation between VEGF and NO in the endogenous regulation of endothelial integrity following arterial injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ferrara, N. & Henzel, W.J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Common. 161, 851–855 (1989).

    Article  CAS  Google Scholar 

  2. Keck, P.J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDCF. Science 246, 1309–1312 (1989).

    Article  CAS  Google Scholar 

  3. Connolly, D.T. et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J. Clin. Invest. 84, 1470–1478 (1989).

    Article  CAS  Google Scholar 

  4. Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  Google Scholar 

  5. Takeshita, S. et al. Time course of increased cellular proliferation in collateral arteries following administration of vascular endothelial growth factor in a rabbit model of lower limb vascular insufficiency. Am. J. Pathol. 147, 1649–1660 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Senger, D.R. et al. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the avb3 integrin, osteopontin, and thrombin. Am. J. Pathol. 149, 293–305 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Millauer, B. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846 (1993).

    Article  CAS  Google Scholar 

  8. Terman, B.I. et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187, 1579–1586 (1992).

    Article  CAS  Google Scholar 

  9. Clauss, M. et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. J. Biol. Chem. 271, 17629–17634 (1996).

    Article  CAS  Google Scholar 

  10. Takeshita, S. et al. Therapeutic angiogenesis: A single intra-arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hindlimb model. J. Clin. Invest. 93, 662–670 (1994).

    Article  CAS  Google Scholar 

  11. Banai, S. et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89, 2183–2189 (1994).

    Article  CAS  Google Scholar 

  12. Takeshita, S. et al. Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Lab. Invest. 75, 487–502 (1996).

    CAS  PubMed  Google Scholar 

  13. Pearlman, J.D. et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nature Med. 1, 1085–1089 (1995).

    Article  CAS  Google Scholar 

  14. Isner, J.M. et al. Clinical evidence of angiogenesis following arterial gene transfer of phVEGF165. Lancet 348, 370–374 (1996).

    Article  CAS  Google Scholar 

  15. Aiello, L.P. et al. Vascular endothelial growth factor in ocular fluids of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  Google Scholar 

  16. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–30 (1995).

    Article  CAS  Google Scholar 

  17. Koch, A. et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J. Immunol. 152, 4149–4156 (1994).

    CAS  PubMed  Google Scholar 

  18. Brown, L.F. et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J. Exp. Med. 176, 1375–1379 (1992).

    Article  CAS  Google Scholar 

  19. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  Google Scholar 

  20. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  Google Scholar 

  21. Asahara, T. et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation 91, 2793–2801 (1995).

    Article  CAS  Google Scholar 

  22. Asahara, T. et al. Accelerated restitution of endothelial integrity and endothelium-dependent function following phVEGF165 gene transfer. Circulation 94, 3291–3302 (1996).

    Article  CAS  Google Scholar 

  23. Van Belle, E. et al. Stent endothelialization: Time course, impact of local catheter delivery, feasibility of recombinant protein administration, and response to cytokine expedition. Circulation 95, 438–448 (1997).

    Article  CAS  Google Scholar 

  24. Van Belle, E. et al. Passivation of metallic stents following arterial gene transfer of phVEGF165 inhibits thrombus formation and intimal thickening. J. Am. Coll. Cardiol. (in the press).

  25. Dvorak, H.F. Tumors: wound that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  Google Scholar 

  26. Shima, D.T. et al. Hypoxic induction of endothelial cell growth factors in retinal cells: Identification and characterization of vascular endothelial growth factor. Mol. Med. 1, 182–193 (1995).

    Article  CAS  Google Scholar 

  27. Plate, K.H., Breier, G., Weich, H.A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vitro. Nature 359, 845–848 (1992).

    Article  CAS  Google Scholar 

  28. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  Google Scholar 

  29. Couffinhal, T., Silver, M., Kearney, M., Sullivan, A. & Isner, J.M. Angiogenesis is impaired in ApoE knock-out mice due to reduced expression of vascular endothelial growth factor [Abstr.]. Circulation 94, (1996).

  30. Li, J. et al. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am. J. Physiol. 270, HI803–H1811 (1996).

    Article  Google Scholar 

  31. Van der Zee, R. et al. Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF) augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation 95, 1030–1037 (1997).

    Article  CAS  Google Scholar 

  32. Hishikawa, K. et al. Pressure promotes DMA synthesis in rat cultured vascular smooth muscle cells. J. Clin. Invest. 93, 1975–1980 (1994).

    Article  CAS  Google Scholar 

  33. Liu, M., Qin, Y., Liu, J., Tanswell, A.K. & Post, M. Mechanical strain induces pp60src activation and translocation to cytoskeleton in fetal rat lung cells. J. Biol. Chem. 271, 7066–7071 (1996).

    Article  CAS  Google Scholar 

  34. Liu, M. et al. Mechanical strain-enhanced fetal lung cell proliferation mediated by phospholipases C and D and protein kinase C. Am. J. Physiol. 268, L729–L738 (1995).

    Article  CAS  Google Scholar 

  35. Gopalakrishna, R., Chen, Z.H. & Gundimeda, U. Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J. Biol. Chem. 268, 27180–27185 (1993).

    CAS  PubMed  Google Scholar 

  36. Lee, S.L., Wang, W-W. & Fanburg, B.L. Nitroprusside inhibits serotonin-induced mitogenesis and tryosine phosphorylation of smooth muscle cells. Am. J. Physiol. 270, HL362–HL367 (1996).

    Google Scholar 

  37. Castagna, M. et al. Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 257, 7847–7851 (1982).

    CAS  Google Scholar 

  38. Angel, P. et al. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated transacting factor. Cell 49, 729–739 (1987).

    Article  CAS  Google Scholar 

  39. Tischer, E. et al. The human gene for vascular endothelial growth factor: Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 266, 11947–11954 (1991).

    CAS  PubMed  Google Scholar 

  40. Davies, P.F. & Tripathi, S.C. Mechanical stress mechanisms and the cell: An endothelial paradigm. Ore. Res. 72, 239–245 (1993).

    CAS  Google Scholar 

  41. Wilson, E., Mai, Q., Krishnankutty, S., Weiss, R.H. & Ives, H.E. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J. Cell Biol. 123, 741–747 (1993).

    Article  CAS  Google Scholar 

  42. Mukhopadhyay, D. et al. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375, 577–581 (1995).

    Article  CAS  Google Scholar 

  43. Couffinhal, T. et al. Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in normal and atherosclerotic human arteries. Am. J. Pathol. 150, 1673–1685 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Luscher, T.F. & Tshuci, M.R. Endothelial dysfunction in coronary artery disease. Annu. Rev. Med. 44, 395–418 (1993).

    Article  CAS  Google Scholar 

  45. Alon, T. et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Med. 1, 1024–1028 (1995).

    Article  CAS  Google Scholar 

  46. Peters, K.G., deVries, C. & Williams, L.T. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc. Natl. Acad. Sci. USA 90, 8915–8919 (1993).

    Article  CAS  Google Scholar 

  47. Senger, D.R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  Google Scholar 

  48. Pepper, M.S., Ferrara, N., Orci, L. & Montesano, R. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem. Biophys. Res. Commun. 181, 902–906 (1991).

    Article  CAS  Google Scholar 

  49. Saffitz, J.E., Sullivan, A. & Isner, J.M. Regulation of endothelial cell connexin expression by vascular endothelial growth factor [Abstr.]. Circulation 94, 1–238 (1996).

    Article  Google Scholar 

  50. Spyridopoulos, I. et al. Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor-alpha: Balance between growth and death signals. J. Mol.Cell Cardiol. 29, 1321–1330 (1997).

    Article  CAS  Google Scholar 

  51. Katoh, O., Tauchi, H., Kawaishi, K., Kimura, A. & Satow, Y. Expression of the vascular endothelial growth factor (VEGF) receptor gene KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res. 55, 5687–5692 (1995).

    CAS  Google Scholar 

  52. Brock, T.A., Dvorak, H.F. & Senger, D.R. Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells. Am. J. Pathol. 138, 213–221 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ku, D.D., Zaleski, J.K., Liu, S. & Brock, T.A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. 265, H586–H592 (1993).

    CAS  PubMed  Google Scholar 

  54. Bauters, C. et al. Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. Circulation 91, 2802–2809 (1995).

    Article  CAS  Google Scholar 

  55. Park, J.E., Chen, H.H., Winer, J., Houck, K.A. & Ferrara, N. Placenta growth factor: Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25646–25654 (1994).

    CAS  PubMed  Google Scholar 

  56. Brogi, E. et al. Hypoxia-induced paracrine regulation of VEGF receptor expression. J. Clin. Invest. 97, 469–476 (1996).

    Article  CAS  Google Scholar 

  57. Namiki, A. et al. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J. Biol. Chem. 270, 31189–31195 (1995).

    Article  CAS  Google Scholar 

  58. Hewett, P.W. & Murray, J.C. Coexpression of flt-1, flt-4 and KDR in freshly isolated and cultured human endothelial cells. Biochem. Biophys. Res. Commun. 221, 697–702 (1996).

    Article  CAS  Google Scholar 

  59. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 965–967 (1997).

    Article  Google Scholar 

  60. Flugelman, M.Y. et al. Smooth muscle cell abundance and fibroblast growth factors in coronary lesions of patients with nonfatal unstable angina: A clue to the mechanism of transformation from the stable to the unstable clinical state. Circulation 88, 2493–2500 (1993).

    Article  CAS  Google Scholar 

  61. Brogi, E. et al. Distinct patterns of expression of fibroblast growth factors and their receptors in human atheroma and nonatherosclerotic arteries: Association of acidic FGF with plaque microvessels and macrophages. J. Clin. Invest. 92, 2408–2418 (1993).

    Article  CAS  Google Scholar 

  62. Stavri, G.T., Zachary, I.C., Baskerville, P.A., Martin, J.F. & Erusalimsky, J.D. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells: Synergistic interaction with hypoxia. Circulation 92, 11–14 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsurumi, Y., Murohara, T., Krasinski, K. et al. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nat Med 3, 879–886 (1997). https://doi.org/10.1038/nm0897-879

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0897-879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing