Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Engineering herpes simplex virus vectors for gene transfer to neurons

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Spear, P. . in Viral Fusion Mechanisms. (ed. Bentz, J.) 201–232 (CRC, Boca Raton, 1993).

    Google Scholar 

  2. Roizman, B. & Sears, A.E. in Field's Virology (ed. Fields, B.N.) 1795–1841 (Raven, New York, 1990).

    Google Scholar 

  3. Fink, D., DeLuca, N.A., Coins, W. & Glorioso, J.C. Gene transfer to neurons using herpes simplex virus-based vectors. Ann. Rev. Neurosci. 19, 265–287 (1996a).

    Article  CAS  PubMed  Google Scholar 

  4. Stevens, J.G. Human herpesviruses: a consideration of the latent state. Mlcrobiol. Rev. 53, 318–332 (1989).

    CAS  Google Scholar 

  5. Batchelor, A.H. & O'Hare, P.O. Localization of cis-acting sequence requirements in the promoter of the latency-associated transcript of herpes simplex virus type-1 required for cell-type-specific activity. J. Virol. 66, 3573–3582 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, X., Schmidt, M.C., Goins, W.F. & Glorioso, J.C. Two herpes simplex virus type-1 latency active promoters differ in their contribution to latency-associated transcript expression during lytic and latent infection. J. Virol. 69, 7899–7908 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dobson, A.T. et al. Identification of the latency-associated transcript promoter by expression of rabbit β-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J. Virol. 63, 3844–3851 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Goins, W.F. et al. A novel latency-active promoter is contained within the herpes simplex virus type-1 UL flanking repeats. J. Virol. 68, 2239–2252 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Leiden, J., Frenkel, N. & Rapp, F. Identification of the herpes simplex virus DNA sequences present in six herpes simplex virus thymidine kinase-transformed mouse cell lines. J. Virol. 33, 272–285 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. DeLuca, N.A., McCarthy, A.M. & Schaffer, P.A. Isolation and characterization of deletion mutants of herpes simplex virus type-1 in the gene encoding immediate-early regulatory protein ICP4. J. Virol. 56, 558–570 (1985a).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Marconi, P. et al. Replication-defective HSV vectors for gene transfer in vivo. Proc. Natl. Acad. Sci. USA 93, 11319–11320 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, N., Watkins, S.C., Schaffer, P.A. & DeLuca, N.A. Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J. Virol. 70, 6358–6368 (1996b).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ho, D.Y. & Mocarski, E.S. Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proc. Natl. Acad. Sci. USA 86, 7596–7600 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oligino, T. et al. In vivo transgene activation from an HSV-based gene vector by GAL4:VP16. Gene Ther. 3, 892–899 (1996a).

    CAS  PubMed  Google Scholar 

  15. Ramakrishnan, R., Levine, M. & Fink, D. PCR-based analysis of herpes simplex virus type-1 latency in the rat trigeminal ganglion established with a ribo-nucleotide reductase-deficient mutant. J. Virol. 68, 7083–7091 (1994a).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramakrishnan, R., Poliani, P., Levine, M., Glorioso, J.C. & Fink, D. Detection of herpes simplex virus type-1 latency-associated transcript expression in trigeminal ganglia by in situreverse transcriptase PCR. J. Virol. 70, 6519–6523 (1996a).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Celler, A. & Breakefield, X. A defective HSV-1 vector expresses Escherichia coliβ-galactosidase in cultured peripheral neurons. Science 241, 1667–1669 (1988).

    Article  Google Scholar 

  18. Federoff, H., Geschwind, M., Geller, A. & Kessler, J. Expression of nerve growth factor in vivofrom a defective herpes simplex virus-1 vector prevents effects of ax-otomy on sympathetic ganglia. Proc. Natl. Acad. Sci. USA 89, 1636–1640 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fraefel, C. et al. Helper virus-free transfer of herpes simplex virus type-1 plasmid vectors into neural cells. J. Virol. 70, 7190–7197 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Scares, M.K., Hwang, D.Y., Schmidt, M.C., Fink, D.J. & Glorioso, J.C. Cis-acting elements involved in transcriptional regulation of the herpes simplex virus type-1 latency-associated promoter 1 (LAP1) In vitro and in vivo. J. Virol. 70, 5384–5394 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, D., Giorioso, J. Engineering herpes simplex virus vectors for gene transfer to neurons. Nat Med 3, 357–359 (1997). https://doi.org/10.1038/nm0397-357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0397-357

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing