Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Purification and expansion of human Schwann cells in vitro

Abstract

The ability to culture cells from the human nervous system provides new insight into the pathophysiology of neurological diseases and could be crucial to the development of gene replacement therapies and neural transplantation. We report that the proliferation of human Schwann cells isolated from paediatric and adult nerves is sustained in vitro by recombinant glial growth factor. Agents that increase intracellular cyclic cAMP were also mitogenic towards Schwann cells but suppress growth of contaminating fibroblasts. As the lifespan of highly enriched cultures can be extended for up to twelve population doublings, large numbers of cells can be generated from nerve biopsies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Fawcett, J. W. & Keynes, R. J. Peripheral nerve regeneration. Rev. Neurosci. 13, 43–60 (1990).

    Article  CAS  Google Scholar 

  2. Raivich, G. & Kreutzberg, G. W. Peripheral nerve regeneration: Role of growth factors and their receptors. Int. J. dev. Neurosci. 11, 311–324 (1993).

    Article  CAS  Google Scholar 

  3. Raff, M. C., Abney, E., Brockes, J. P. & Hornby-Smith, A., Schwann cell growth factors. Cell 15, 813–822 (1978).

    Article  CAS  Google Scholar 

  4. Goodearl, A. D. et al. Purification of multiple forms of glial growth factor. J. biol Chem. 268, 18095–18102 (1993).

    CAS  PubMed  Google Scholar 

  5. Marchionni, M. A. et al. Glial growth factors are alternatively spliced erbB2 lig-ands expressed in the nervous system. Nature 362, 312–318 (1993).

    Article  CAS  Google Scholar 

  6. Peles, E. & Yarden, Y. Neu and its ligands: From an oncogene to neural factors. Bioessays 15, 815–824 (1993).

    Article  CAS  Google Scholar 

  7. Carraway, K. L. & Cantley, L.C. A neu acquaintance for erbB3 and erbB4: A role for receptor heterodimerization in growth signaling. Cell 78, 5–8 (1994).

    Article  CAS  Google Scholar 

  8. Salzer, J. L. & Bunge, R. P. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J. Cell Biol. 84, 739–752 (1980).

    Article  CAS  Google Scholar 

  9. Espinosa, B. & Wharton, W. Effects of cholera toxin and isobutylmethylxanthine on growth of human fibroblasts. Am. J. Physiol 251, C238–246 (1986).

    Article  Google Scholar 

  10. Cohen, J. A., Yachnis, A. T., Aral, M., Davis, J. G. & Scherer, S. S. Expression of the neu proto-oncogene by Schwann cells during peripheral nerve development and Wallerian degeneration. J. Neurosci. Res. 31, 622–634 (1992).

    Article  CAS  Google Scholar 

  11. Porter, S., Glaser, L. & Bunge, R. P. Release of autocrine growth factor by primary and immortalized Schwann cells. Proc. natn. Acad. Sci. U.S.A. 84, 7768–7772 (1987).

    Article  CAS  Google Scholar 

  12. Muir, D., Varon, S. & Manthorpe, M., Schwann cell proliferation in vitro is under negative autocrine control. J. Cell Biol. 111, 2663–2671 (1990).

    Article  CAS  Google Scholar 

  13. Bolin, L. M., Iismaa, T. P. & Shooter, E. M. Isolation of activated adult Schwann cells and a spontaneously immortal Schwann cell clone. J. Neurosci. Res. 33, 231–238 (1992).

    Article  CAS  Google Scholar 

  14. Davis, J. B. & Stroobant, P. Platelet-derived growth factors and fibroblast growth factors are mitogens for rat Schwann cells. J. Cell Biol. 110, 1353–1360 (1990).

    Article  CAS  Google Scholar 

  15. Askanas, V., Engel, W. K., Dalakas, M. C., Lawrence, J. V. & Carter, L. S. Human Schwann cells in tissue culture: Histochemical and ultrastructural studies. Arch. Neurol. 37, 329–337 (1980).

    Article  CAS  Google Scholar 

  16. Moretto, G., Kim, S. U., Shin, D. H., Pleasure, D. E. & Rizzuro, N. Long-term cultures of human adult Schwann cells isolated from autopsy materials. Acta. Neuropath. 64, 15–21 (1984).

    Article  CAS  Google Scholar 

  17. Scarpini, E. et al. Cultures of human Schwann cells isolated from fetal nerves. Brain Res. 440, 261–266 (1988).

    Article  CAS  Google Scholar 

  18. Kim, S. U., Yong, V. W., Watabe, K. & Shin, D. H. Human fetal Schwann cells in culture: Phenotypic expressions and proliferative capability. J. Neurosci. Res. 22, 50–59 (1989).

    Article  Google Scholar 

  19. Rutkowski, J. L., Tennekoon, G. I. & McGillicuddy, J. E. Selective culture of mi-totically active human Schwann cells from adult sural nerves. Ann. Neurol 31, 580–586 (1992).

    Article  CAS  Google Scholar 

  20. Levi, A. D. O., Guenard, V., Aebischer, P. & Bunge, R. P. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J. Neurosci. 14, 1309–1319 (1994).

    Article  CAS  Google Scholar 

  21. Chance, P. F. & Pleasure, D. Charcot-Marie-Tooth syndrome. Arch. Neurol 50, 1180–1184 (1993).

    Article  CAS  Google Scholar 

  22. Aicardi, J. The inherited leukodystrophies: A clinical overview. J. Inherit. Metab. Dis. 16, 733–743 (1993).

    Article  CAS  Google Scholar 

  23. Gutmann, D. H. New insights into the neurofibromatoses. Curr. Opin. Neurol. 7, 166–171 (1994).

    Article  CAS  Google Scholar 

  24. Hughes, R. A. The spectrum of acquired demyelinating polyradiculoneuropathy. Acta Neurol. Belg. 94, 128–132 (1994).

    CAS  PubMed  Google Scholar 

  25. Zager, E. L. & Black, P. M. Neural transplantation. Surg. Neurol. 29, 350–366 (1988).

    Article  CAS  Google Scholar 

  26. Bunge, R. P., Kleitman, N., Ard, M. D. & Duncan, I. D. Culture preparations of neuroglial cells useful for studies of myelin repair and axonal regeneration in the central nervous system. Prog. Brain Res. 78, 312–316 (1988).

    Google Scholar 

  27. Fisher, L. J. & Gage, F. H. Grafting in the mammalian central nervous system. Physiol Rev. 73, 583–616 (1993).

    Article  CAS  Google Scholar 

  28. Brockes, J. P. Assay and isolation of glial growth factor from the bovine pituitary. Meth. Enzym. 147, 217–225 (1987).

    Article  CAS  Google Scholar 

  29. Boyer, P. J. et al. Sources of human Schwann cells and the influence of donor age. Expl Neurol 130, 53–54 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutkowski, J., Kirk, C., Lerner, M. et al. Purification and expansion of human Schwann cells in vitro. Nat Med 1, 80–83 (1995). https://doi.org/10.1038/nm0195-80

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0195-80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing