Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice

A Corrigendum to this article was published on 07 May 2015

A Corrigendum to this article was published on 07 April 2015

This article has been updated

Abstract

Most mutations that truncate the reading frame of the DMD gene cause loss of dystrophin expression and lead to Duchenne muscular dystrophy. However, amelioration of disease severity has been shown to result from alternative translation initiation beginning in DMD exon 6 that leads to expression of a highly functional N-truncated dystrophin. Here we demonstrate that this isoform results from usage of an internal ribosome entry site (IRES) within exon 5 that is glucocorticoid inducible. We confirmed IRES activity by both peptide sequencing and ribosome profiling in muscle from individuals with minimal symptoms despite the presence of truncating mutations. We generated a truncated reading frame upstream of the IRES by exon skipping, which led to synthesis of a functional N-truncated isoform in both human subject–derived cell lines and in a new DMD mouse model, where expression of the truncated isoform protected muscle from contraction-induced injury and corrected muscle force to the same level as that observed in control mice. These results support a potential therapeutic approach for patients with mutations within the 5′ exons of DMD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein and RNA studies from human biopsy samples.
Figure 2: Mapping of a dystrophin IRES in exon 5.
Figure 3: Stimulation of IRES activity by out-of-frame exon skipping in human subject–derived cell lines.
Figure 4: Intramuscular delivery of AAV1.
Figure 5: Glucorticoid activation of the dystrophin IRES.
Figure 6: Muscle pathology, membrane integrity and contraction-induced damage following expression of the IRES-driven isoform.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

NCBI Reference Sequence

Change history

  • 25 August 2014

     In the version of this article initially published online, the nucleotide numbering of the AS (–3 to + 16), B (+17 to +40) and C (+49 to –10) targeted sequences in Figure 3b was incorrect, and thus the schematic of the sequences was incorrectly drawn. The correct numbering is as follows: AS, –3 to + 18; B, +17 to +44; and C, +49 to –8. The correction has no impact on the results of the study or its conclusions. The error has been corrected for all versions of this article.

  • 13 March 2015

     In the version of this article initially published, three participants of the study were not included as co-authors. Also, one of the individuals mentioned in the Acknowledgments section of the report was incorrectly included and thus has been removed at their request, and the name of another individual mentioned in the Acknowledgments was originally misspelled (“Fabbri” should have been "Fabri"). The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Monaco, A.P. Dystrophin, the protein product of the Duchenne/Becker muscular dystrophy gene. Trends Biochem. Sci. 14, 412–415 (1989).

    CAS  PubMed  Google Scholar 

  2. Flanigan, K.M. et al. DMD Trp3X nonsense mutation associated with a founder effect in North American families with mild Becker muscular dystrophy. Neuromuscul. Disord. 19, 743–748 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Flanigan, K.M. et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum. Mutat. 30, 1657–1666 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gurvich, O.L. et al. DMD exon 1 truncating point mutations: amelioration of phenotype by alternative translation initiation in exon 6. Hum. Mutat. 30, 633–640 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Witting, N., Duno, M. & Vissing, J. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2. Neuromuscul. Disord. 23, 25–28 (2013).

    CAS  PubMed  Google Scholar 

  6. Gimona, M., Djinovic-Carugo, K., Kranewitter, W.J. & Winder, S.J. Functional plasticity of CH domains. FEBS Lett. 513, 98–106 (2002).

    CAS  PubMed  Google Scholar 

  7. Hertz, M.I., Landry, D.M., Willis, A.E., Luo, G. & Thompson, S.R. Ribosomal protein S25 dependency reveals a common mechanism for diverse internal ribosome entry sites and ribosome shunting. Mol. Cell. Biol. 33, 1016–1026 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Spriggs, K.A., Bushell, M. & Willis, A.E. Translational regulation of gene expression during conditions of cell stress. Mol. Cell 40, 228–237 (2010).

    CAS  PubMed  Google Scholar 

  9. Jang, S.K. et al. A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Miura, P., Thompson, J., Chakkalakal, J.V., Holcik, M. & Jasmin, B.J. The utrophin A 5′-untranslated region confers internal ribosome entry site-mediated translational control during regeneration of skeletal muscle fibers. J. Biol. Chem. 280, 32997–33005 (2005).

    CAS  PubMed  Google Scholar 

  11. Miura, P., Andrews, M., Holcik, M. & Jasmin, B.J. IRES-mediated translation of utrophin A is enhanced by glucocorticoid treatment in skeletal muscle cells. PLoS ONE 3, e2309 (2008).

    PubMed  PubMed Central  Google Scholar 

  12. Cornelis, S. et al. Identification and characterization of a novel cell cycle–regulated internal ribosome entry site. Mol. Cell 5, 597–605 (2000).

    CAS  PubMed  Google Scholar 

  13. Komar, A.A. et al. Internal initiation drives the synthesis of Ure2 protein lacking the prion domain and affects [URE3] propagation in yeast cells. EMBO J. 22, 1199–1209 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lauring, A.S. & Overbaugh, J. Evidence that an IRES within the Notch2 coding region can direct expression of a nuclear form of the protein. Mol. Cell 6, 939–945 (2000).

    CAS  PubMed  Google Scholar 

  15. Maier, D., Nagel, A.C. & Preiss, A. Two isoforms of the Notch antagonist Hairless are produced by differential translation initiation. Proc. Natl. Acad. Sci. USA 99, 15480–15485 (2002).

    CAS  PubMed  Google Scholar 

  16. Baird, S.D., Turcotte, M., Korneluk, R.G. & Holcik, M. Searching for IRES. RNA 12, 1755–1785 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Heppner Goss, K., Trzepacz, C., Tuohy, T.M. & Groden, J. Attenuated APC alleles produce functional protein from internal translation initiation. Proc. Natl. Acad. Sci. USA 99, 8161–8166 (2002).

    CAS  PubMed  Google Scholar 

  18. White, S.J. et al. Duplications in the DMD gene. Hum. Mutat. 27, 938–945 (2006).

    CAS  PubMed  Google Scholar 

  19. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    CAS  PubMed  Google Scholar 

  20. Ameur, A. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 18, 1435–1440 (2011).

    CAS  PubMed  Google Scholar 

  21. Johannes, G., Carter, M.S., Eisen, M.B., Brown, P.O. & Sarnow, P. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl. Acad. Sci. USA 96, 13118–13123 (1999).

    CAS  PubMed  Google Scholar 

  22. Murray, E.L. & Schoenberg, D.R. A+U-rich instability elements differentially activate 5′-3′ and 3′-5′ mRNA decay. Mol. Cell. Biol. 27, 2791–2799 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stoneley, M. et al. Analysis of the c-myc IRES; a potential role for cell-type specific trans-acting factors and the nuclear compartment. Nucleic Acids Res. 28, 687–694 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Thompson, S.R. So you want to know if your message has an IRES? Wiley interdisciplinary reviews. RNA 3, 697–705 (2012).

    CAS  PubMed  Google Scholar 

  25. Kozak, M. A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res. 33, 6593–6602 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wood, M.J., Gait, M.J. & Yin, H. RNA-targeted splice-correction therapy for neuromuscular disease. Brain 133, 957–972 (2010).

    PubMed  Google Scholar 

  27. Goyenvalle, A. et al. Rescue of dystrophic muscle through U7 snRNA–mediated exon skipping. Science 306, 1796–1799 (2004).

    CAS  PubMed  Google Scholar 

  28. Vulin, A. et al. Muscle function recovery in golden retriever muscular dystrophy after AAV1–U7 exon skipping. Mol. Ther. 20, 2120–2133 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chaouch, S. et al. Immortalized skin fibroblasts expressing conditional MyoD as a renewable and reliable source of converted human muscle cells to assess therapeutic strategies for muscular dystrophies: validation of an exon-skipping approach to restore dystrophin in Duchenne muscular dystrophy cells. Hum. Gene Ther. 20, 784–790 (2009).

    CAS  PubMed  Google Scholar 

  30. Aartsma-Rus, A. et al. Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: indication for steric hindrance of SR protein binding sites. Oligonucleotides 15, 284–297 (2005).

    CAS  PubMed  Google Scholar 

  31. Matsumura, K., Ervasti, J.M., Ohlendieck, K., Kahl, S.D. & Campbell, K.P. Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360, 588–591 (1992).

    CAS  PubMed  Google Scholar 

  32. Kozak, M. & Shatkin, A.J. Migration of 40 S ribosomal subunits on messenger RNA in the presence of edeine. J. Biol. Chem. 253, 6568–6577 (1978).

    CAS  PubMed  Google Scholar 

  33. Calvo, S.E., Pagliarini, D.J. & Mootha, V.K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci. USA 106, 7507–7512 (2009).

    CAS  PubMed  Google Scholar 

  34. Kozak, M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol. Cell. Biol. 9, 5073–5080 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hellen, C.U. & Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 15, 1593–1612 (2001).

    CAS  PubMed  Google Scholar 

  36. López-Lastra, M., Rivas, A. & Barria, M.I. Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation. Biol. Res. 38, 121–146 (2005).

    PubMed  Google Scholar 

  37. Yaman, I. et al. The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell 113, 519–531 (2003).

    CAS  PubMed  Google Scholar 

  38. Cencig, S. et al. Mapping and characterization of the minimal internal ribosome entry segment in the human c-myc mRNA 5′ untranslated region. Oncogene 23, 267–277 (2004).

    CAS  PubMed  Google Scholar 

  39. Gerbasi, V.R. & Link, A.J. The myotonic dystrophy type 2 protein ZNF9 is part of an ITAF complex that promotes cap-independent translation. Mol. Cell. Proteomics 6, 1049–1058 (2007).

    CAS  PubMed  Google Scholar 

  40. Pickering, B.M., Mitchell, S.A., Spriggs, K.A., Stoneley, M. & Willis, A.E. Bag-1 internal ribosome entry segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and recruitment of polypyrimidine tract binding protein 1. Mol. Cell. Biol. 24, 5595–5605 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Campbell, K.P. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80, 675–679 (1995).

    CAS  PubMed  Google Scholar 

  42. Bloch, R.J. & Gonzalez-Serratos, H. Lateral force transmission across costameres in skeletal muscle. Exerc. Sport Sci. Rev. 31, 73–78 (2003).

    PubMed  Google Scholar 

  43. Stradal, T., Kranewitter, W., Winder, S.J. & Gimona, M. CH domains revisited. FEBS Lett. 431, 134–137 (1998).

    CAS  PubMed  Google Scholar 

  44. Gimona, M. & Winder, S.J. Single calponin homology domains are not actin-binding domains. Curr. Biol. 8, R674–R675 (1998).

    CAS  PubMed  Google Scholar 

  45. Norwood, F.L., Sutherland-Smith, A.J., Keep, N.H. & Kendrick-Jones, J. The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure 8, 481–491 (2000).

    CAS  PubMed  Google Scholar 

  46. Sutherland-Smith, A.J. et al. An atomic model for actin binding by the CH domains and spectrin-repeat modules of utrophin and dystrophin. J. Mol. Biol. 329, 15–33 (2003).

    CAS  PubMed  Google Scholar 

  47. Rybakova, I.N., Humston, J.L., Sonnemann, K.J. & Ervasti, J.M. Dystrophin and utrophin bind actin through distinct modes of contact. J. Biol. Chem. 281, 9996–10001 (2006).

    CAS  PubMed  Google Scholar 

  48. Lin, A.Y. et al. Impacts of dystrophin and utrophin domains on actin structural dynamics: implications for therapeutic design. J. Mol. Biol. 420, 87–98 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Henderson, D.M., Lin, A.Y., Thomas, D.D. & Ervasti, J.M. The carboxy-terminal third of dystrophin enhances actin binding activity. J. Mol. Biol. 416, 414–424 (2012).

    CAS  PubMed  Google Scholar 

  50. Corrado, K. et al. Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a “mild Becker” phenotype. J. Cell Biol. 134, 873–884 (1996).

    CAS  PubMed  Google Scholar 

  51. Le Rumeur, E., Winder, S.J. & Hubert, J.F. Dystrophin: more than just the sum of its parts. Biochim. Biophys. Acta 1804, 1713–1722 (2010).

    CAS  PubMed  Google Scholar 

  52. Bhosle, R.C., Michele, D.E., Campbell, K.P., Li, Z. & Robson, R.M. Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem. Biophys. Res. Commun. 346, 768–777 (2006).

    CAS  PubMed  Google Scholar 

  53. Rezniczek, G.A. et al. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with β-dystroglycan. J. Cell Biol. 176, 965–977 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Prins, K.W. et al. Dystrophin is a microtubule-associated protein. J. Cell Biol. 186, 363–369 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Beggs, A.H. et al. Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies. Am. J. Hum. Genet. 49, 54–67 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Winnard, A.V. et al. Characterization of translational frame exception patients in Duchenne/Becker muscular dystrophy. Hum. Mol. Genet. 2, 737–744 (1993).

    CAS  PubMed  Google Scholar 

  57. Winnard, A.V., Mendell, J.R., Prior, T.W., Florence, J. & Burghes, A.H. Frameshift deletions of exons 3–7 and revertant fibers in Duchenne muscular dystrophy: mechanisms of dystrophin production. Am. J. Hum. Genet. 56, 158–166 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Heald, A., Anderson, L.V., Bushby, K.M. & Shaw, P.J. Becker muscular dystrophy with onset after 60 years. Neurology 44, 2388–2390 (1994).

    CAS  PubMed  Google Scholar 

  59. Johannes, G., Carter, M.S., Eisen, M.B., Brown, P.O. & Sarnow, P. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl. Acad. Sci. USA 96, 13118–13123 (1999).

    CAS  PubMed  Google Scholar 

  60. Goyenvalle, A. et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306, 1796–1799 (2004).

    CAS  PubMed  Google Scholar 

  61. Wein, N. et al. Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum. Mutat. 31, 136–142 (2010).

    CAS  PubMed  Google Scholar 

  62. Clark, K.R., Liu, X., McGrath, J.P. & Johnson, P.R. Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum. Gene Ther. 10, 1031–1039 (1999).

    CAS  PubMed  Google Scholar 

  63. Bovolenta, M. et al. A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies. BMC Genomics 9, 572 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Morris, G.E. et al. An epitope structure for the C-terminal domain of dystrophin and utrophin. Biochemistry 37, 11117–11127 (1998).

    CAS  PubMed  Google Scholar 

  65. Spurney, C.F. et al. Preclinical drug trials in the mdx mouse: assessment of reliable and sensitive outcome measures. Muscle Nerve 39, 591–602 (2009).

    PubMed  PubMed Central  Google Scholar 

  66. Hakim, C.H., Grange, R.W. & Duan, D. The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2- to 20-mo-old mdx mice. J. Appl. Physiol. 110, 1656–1663 (2011).

    PubMed  PubMed Central  Google Scholar 

  67. Julesz, B. Spatial nonlinearities in the instantaneous perception of textures with identical power spectra. Phil. Trans. R. Soc. Lond. B 290, 83–94 (1980).

    CAS  Google Scholar 

  68. Porikli, F. Integral histogram: A fast way to extract histograms in cartesian spaces. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 1, 829–836 (2005).

    Google Scholar 

  69. Schmid, C. Constructing models for content-based image retrieval. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2, II-39–II-45 (2001).

    Google Scholar 

  70. Di Zenzo, S. A note on the gradient of a multi-image. Comput. Vis. Graph. Image Process. 33, 116–125 (1986).

    Google Scholar 

  71. Gevers, T. Adaptive image segmentation by combining photometric invariant region and edge information. IEEE Trans. Pattern Anal. Mach. Intrll. 24, 848–852 (2002).

    Google Scholar 

  72. Sapiro, G. & Ringach, D.L. Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5, 1582–1586 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the US National Institutes of Health National Institute of Neurological Disorders and Stroke (R01 NS043264 (K.M.F., M.T.H. and R.B.W.)), the National Institute of General Medical Sciences (R01 GM038277 and R01 GM084177 (D.R.S.)), and CureDuchenne (K.M.F.). N.W. has received fellowship support from the Ohio State University/Nationwide Children's Hospital Muscle Group and the Philippe Foundation. We wish to acknowledge the technical assistance of A. Rutherford, Y. Kaminoh and L. Taylor and are grateful for the reagents provided by P. Sarnow (pRDEF; Stanford University) and G. Morris (hybridoma cell lines for antibodies MANEX1A, MANCHO3 and MANDAG2; MDA Monoclonal Antibody Resource at the Wolfson Centre for Inherited Neuromuscular Disease). The EU BIO-NMD project (no. 241665) provided support to A. Ferlini and C.A.-K.S., and the Duchenne Parent Project Italy (DMD Diagnostics Project) provided support to A. Ferlini. Thanks are also due to C. Rodolico and M. Fabris for their technical support. The Clinical Proteomics Mass Spectrometry core facility at Karolinska University Hospital and Science for Life Laboratory provided assistance in mass spectrometry and data analysis.

Author information

Authors and Affiliations

Authors

Contributions

N.W. performed the immunostaining staining on human and mouse muscle, generated reagents for and performed all luciferase experiments, immortalized and transdifferentiated human cell lines, performed immunoblot and RT-PCR experiments on C2C12 and FibroMyoD cells, and performed RT-PCR on mouse tissues. A.V. generated the Dup2 mouse model, injected all mice and performed all immublotting on mouse tissue and on muscle biopsies from the subjects with Dup2 and frameshift mutations. B.M. generated the master exon 1–5 construct and performed the initial dual luciferase assays. K.N.H. and L.R.R.-K. performed or analyzed the specific force and eccentric contraction–induced damage tests. L.Y. developed and performed the H&E and EBD quantification. A. Ferlini, C.A.-K.S. and M.U. designed and performed analysis of the exon 2–deleted muscle. S.M., G.V. and C.P. clinically characterized the subject with exon 2 deletion, and S.B., M.B., and M.N. performed the genetic characterization of the patient with exon 2 deletion. M.S.F. performed cell and AON studies on a subject with exon 2 deletion. S.D.W. provided critical reagents (AONs) for cell-based experiments. B.B. and D.R.S. designed and performed the formaldehyde RNA electrophoresis and northern blotting. D.M.D. and R.B.W. designed and performed the ribosome profiling experiments. A. Findlay generated all the U7 constructs. N.W., M.T.H. and K.M.F. designed the experiments and analyzed and interpreted the data. N.W., R.B.W. and K.M.F. wrote the manuscript and the compiled the figures, with contributions from A.V., F.G., R.B.W., A. Ferlini and D.R.S.

Corresponding author

Correspondence to Kevin M Flanigan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 18173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wein, N., Vulin, A., Falzarano, M. et al. Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nat Med 20, 992–1000 (2014). https://doi.org/10.1038/nm.3628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3628

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research