Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crossover clustering and rapid decay of linkage disequilibrium in the Xp/Yp pseudoautosomal gene SHOX

Abstract

Crossover between the human sex chromosomes during male meiosis is restricted to the terminal pseudoautosomal pairing regions. An obligatory exchange occurs in PAR1, an Xp/Yp pseudoautosomal region of 2.6 Mb, which creates a male-specific recombination 'hot domain' with a recombination rate that is about 20 times higher than the genome average1,2,3. Low-resolution analysis of PAR1 suggests that crossovers are distributed fairly randomly4. By contrast, linkage disequilibrium (LD)5 and sperm crossover analyses6 indicate that crossovers in autosomal regions tend to cluster into 'hot spots' of 1–2 kb that lie between islands of disequilibrium of tens to hundreds of kilobases7. To determine whether at high resolution this autosomal pattern also applies to PAR1, we have examined linkage disequilibrium over an interval of 43 kb around the gene SHOX8. Here we show that in northern European populations, disequilibrium decays rapidly with physical distance, which is consistent with this interval of PAR1 being recombinationally active in male meiosis. Analysis of a subregion of 9.9 kb in sperm shows, however, that crossovers are not distributed randomly, but instead cluster into an intense recombination hot spot that is very similar in morphology to autosomal hot spots. Thus, PAR1 crossover activity may be influenced by male-specific hot spots that are highly suitable for characterization by sperm DNA analysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA diversity and LD around SHOX.
Figure 2: Detecting SHOX recombinants in bulk sperm DNA.
Figure 3: Meiotic recombination in the SHOX region.
Figure 4: Relationship between LD and recombination in the SHOX region.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rouyer,F. et al. A gradient of sex-linkage in the pseudoautosomal region of the human sex chromosomes. Nature 319, 291–295 (1986).

    Article  CAS  Google Scholar 

  2. Rappold, G.A. The pseudoautosomal regions of the human sex-chromosomes. Hum. Genet. 92, 315–324 (1993).

    Article  CAS  Google Scholar 

  3. Page, D.C. et al. Linkage, physical mapping, and DNA sequence analysis of pseudoautosomal loci on the human X and Y chromosomes. Genomics 1, 243–256 (1987).

    Article  CAS  Google Scholar 

  4. Lien, S., Szyda, J., Schechinger, B., Rappold, G. & Arnheim, N. Evidence for heterogeneity in recombination in the human pseudoautosomal region: high resolution analysis by sperm typing and radiation-hybrid mapping. Am. J. Hum. Genet. 66, 557–566 (2000).

    Article  CAS  Google Scholar 

  5. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J. & Lander, E.S. High-resolution haplotype structure in the human genome. Nature Genet. 29, 229–232 (2001).

    Article  CAS  Google Scholar 

  6. Jeffreys, A.J., Kauppi, L. & Neumann, R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nature Genet. 29, 217–222 (2001).

    Article  CAS  Google Scholar 

  7. Goldstein, D.B. Islands of linkage disequilibrium. Nature Genet. 29, 109–111 (2001).

    Article  CAS  Google Scholar 

  8. Rao, E. et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nature Genet. 16, 54–63 (1997).

    Article  CAS  Google Scholar 

  9. Watterson, G.A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7, 256–276 (1975).

    Article  CAS  Google Scholar 

  10. Nei, M. & Li, W.-H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl Acad. Sci. USA 76, 5269–5273 (1979).

    Article  CAS  Google Scholar 

  11. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    Article  CAS  Google Scholar 

  12. Halushka, M.K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    Article  CAS  Google Scholar 

  13. Baird, D.M., Jeffreys, A.J. & Royle, N.J. Mechanisms underlying telomere repeat turnover, revealed by hypervariable variant repeat distribution patterns in the human Xp/Yp telomere. EMBO J. 14, 5433–5443 (1995).

    Article  CAS  Google Scholar 

  14. Schiebel, K. et al. Elevated DNA sequence diversity in the genomic region of the phosphatase PPP2R3L gene in the human pseudoautosomal region. Cytogenet. Cell Genet. 91, 224–230 (2000).

    Article  CAS  Google Scholar 

  15. Lewontin, R.C. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49, 49–67 (1984).

    Google Scholar 

  16. Sajantila, A. et al. Genes and languages in Europe: an analysis of mitochondrial lineages. Genome Res. 5, 42–52 (1995).

    Article  CAS  Google Scholar 

  17. Slatkin, M. Linkage disequilibrium in growing and stable populations. Genetics 137, 331–336 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Laan, M. & Paabo, S. Demographic history and linkage disequilibrium in human populations. Nature Genet. 17, 435–438 (1997).

    Article  CAS  Google Scholar 

  19. Pritchard, J.K. & Przeworski, M. Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet. 69, 1–14 (2001).

    Article  CAS  Google Scholar 

  20. Kalaydjieva, L. et al. Patterns of inter- and intra-group genetic diversity in the Vlax Roma as revealed by Y chromosome and mitochondrial DNA lineages. Eur. J. Hum. Genet. 9, 97–104 (2001).

    Article  CAS  Google Scholar 

  21. Hill, W.G. & Robertson, A. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38, 226–231 (1968).

    Article  CAS  Google Scholar 

  22. Jeffreys, A.J., Murray, J. & Neumann, R. High resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hot spot. Mol. Cell 2, 267–273 (1998).

    Article  CAS  Google Scholar 

  23. Jeffreys, A.J., Ritchie, A. & Neumann, R. High resolution analysis of haplotype diversity and meiotic recombination in the human TAP2 recombination hot spot. Hum. Mol. Genet. 9, 725–733 (2000).

    Article  CAS  Google Scholar 

  24. Sved, J.A. Linkage disequilibrium and homozygosity of chromosomal segments in finite populations. Theor. Popul. Biol. 2, 125–141 (1971).

    Article  CAS  Google Scholar 

  25. Morton, N.E. Outline of Genetic Epidemiology (Karger, Basel, Switzerland, 1982).

    Google Scholar 

  26. Jeffreys, A.J., MacLeod, A., Tamaki, K., Neil, D.L. & Monckton, D.G. Minisatellite repeat coding as a digital approach to DNA typing. Nature 354, 204–209 (1991).

    Article  CAS  Google Scholar 

  27. Jeffreys, A.J. et al. Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145 (1994).

    Article  CAS  Google Scholar 

  28. Su, A., Wu, Y., Sifri, C.D. & Wellems, T.E. Reduced extension temperatures required for PCR amplification of extremely A+T-rich DNA. Nucleic Acids Res. 24, 1574–1575 (1996).

    Article  CAS  Google Scholar 

  29. Ellison, J.W. et al. PHOG, a candidate gene for involvement in the short stature of Turner syndrome. Hum. Mol. Genet. 6, 1341–1347 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the many UK volunteers and the Saami and Romani communities for contributing semen and blood samples, and J. Blower, A. Kozlov and G. Vershubsky for coordinating sample collection. We also thank J. Brookfield, F. Calafell, Y. Dubrova, M. Jobling, Z. Rosser, N. Royle, T. Slingsby, J. Wetton and colleagues for advice and comments on the manuscript. This work was funded by grants to A.J.J. from the UK Medical Research Council, the Wellcome Trust and the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia A. May.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, C., Shone, A., Kalaydjieva, L. et al. Crossover clustering and rapid decay of linkage disequilibrium in the Xp/Yp pseudoautosomal gene SHOX. Nat Genet 31, 272–275 (2002). https://doi.org/10.1038/ng918

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing