Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease

Abstract

Initially identified in high-grade gliomas, mutations in the PTEN tumor-suppressor are also found in many sporadic cancers and a few related autosomal dominant hamartoma syndromes. PTEN is a 3′-specific phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) phosphatase and functions as a negative regulator of PI3K signaling. We generated a tissue-specific deletion of the mouse homolog Pten to address its role in brain function. Mice homozygous for this deletion (PtenloxP/loxP;Gfap-cre), developed seizures and ataxia by 9 wk and died by 29 wk. Histological analysis showed brain enlargement in PtenloxP/loxP;Gfap-cre mice as a consequence of primary granule-cell dysplasia in the cerebellum and dentate gyrus. Pten mutant cells showed a cell-autonomous increase in soma size and elevated phosphorylation of Akt. These data represent the first evidence for the role of Pten and Akt in cell size regulation in mammals and provide an animal model for a human phakomatosis condition, Lhermitte-Duclos disease (LDD).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted conditional deletion of Pten in the brain.
Figure 2: Pten expression in glial cells of PtenloxP/loxP;Gfap-cre mice aged 10 wk.
Figure 7: Pronounced dysplasia of the dentate gyrus (DG) and CA3.
Figure 3: Brain-specific conditional deletion of Pten results in premature death, macrocephaly and hydrocephalus.
Figure 4: Staining of cerebella of PtenloxP/loxP;Gfap-cre mice and controls.
Figure 5: Increased activation of Akt and granule soma size in PtenloxP/loxP;Gfap-cre cerebella.
Figure 6: Appearance, cell death and proliferation are normal in the EGCL of Pten mutant mice during postnatal development.

Similar content being viewed by others

References

  1. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  Google Scholar 

  2. Steck, P.A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362 (1997).

    Article  CAS  Google Scholar 

  3. Simpson, L. & Parsons, R. PTEN: life as a tumor suppressor. Exp. Cell. Res. 264, 29–41 (2001).

    Article  CAS  Google Scholar 

  4. Maehama, T. & Dixon, J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    Article  CAS  Google Scholar 

  5. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  Google Scholar 

  6. Haas-Kogan, D. et al. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr. Biol. 8, 1195–1198 (1998).

    Article  CAS  Google Scholar 

  7. Sun, H. et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc. Natl Acad. Sci. USA 96, 6199–6204 (1999).

    Article  CAS  Google Scholar 

  8. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    Article  CAS  Google Scholar 

  9. Marsh, D.J. et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome [letter]. Nature Genet. 16, 333–334 (1997).

    Article  CAS  Google Scholar 

  10. Marsh, D.J. et al. Germline PTEN mutations in Cowden syndrome–like families. J. Med. Genet. 35, 881–885 (1998).

    Article  CAS  Google Scholar 

  11. Marsh, D.J. et al. PTEN mutation spectrum and genotype–phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum. Mol. Genet. 8, 1461–1472 (1999).

    Article  CAS  Google Scholar 

  12. Eng, C. & Peacocke, M. PTEN and inherited hamartoma-cancer syndromes [letter]. Nature Genet. 19, 223 (1998).

    Article  CAS  Google Scholar 

  13. Wiestler, O.D., Padberg, G.W. & Steck, P.A. Cowden disease and dysplastic gangliocytoma of the cerebellum/Lhermitte-Duclos disease. in Pathology and Genetics of Tumors of the Nervous System (eds. Kleihues, P. & Cavenee, W.K.) 235–237 (IARCPress, Lyon, 2000).

    Google Scholar 

  14. Holland, E.C. et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genet. 25, 55–57 (2000).

    Article  CAS  Google Scholar 

  15. Ding, H. et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res. 61, 3826–3836 (2001).

    CAS  PubMed  Google Scholar 

  16. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P.P. Pten is essential for embryonic development and tumour suppression. Nature Genet. 19, 348–355 (1998).

    Article  CAS  Google Scholar 

  17. Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998).

    Article  CAS  Google Scholar 

  18. Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA 96, 1563–1568 (1999).

    Article  CAS  Google Scholar 

  19. Stambolic, V. et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/− mice. Cancer Res. 60, 3605–3611 (2000).

    CAS  PubMed  Google Scholar 

  20. Kwon, C.H. et al. Pten regulates neuronal soma size: a mouse model for Lhermitte-Duclos disease. Nature Genet. 29, 404–411 (2001).

    Article  CAS  Google Scholar 

  21. Suzuki, A. et al. T cell–specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    Article  CAS  Google Scholar 

  22. Lachyankar, M.B. et al. A role for nuclear PTEN in neuronal differentiation. J. Neurosci. 20, 1404–1413 (2000).

    Article  CAS  Google Scholar 

  23. Myers, M.P. et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl Acad Sci. USA. 95, 13513–13518 (1998).

    Article  CAS  Google Scholar 

  24. Dahia, P.L. et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum. Mol. Genet. 8, 185–193 (1999).

    Article  CAS  Google Scholar 

  25. Ramaswamy, S. et al. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc. Natl Acad. Sci. USA. 96, 2110–2115 (1999).

    Article  CAS  Google Scholar 

  26. Bruni, P. et al. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene 19, 3146–3155 (2000).

    Article  CAS  Google Scholar 

  27. Hampe, C.S. et al. A novel monoclonal antibody specific for the N-terminal end of GAD65. J. Neuroimmunol. 113, 63–71 (2001).

    Article  CAS  Google Scholar 

  28. Wuenschell, C.W., Fisher, R.S., Kaufman, D.L. & Tobin, A.J. In situ hybridization to localize mRNA encoding the neurotransmitter synthetic enzyme glutamate decarboxylase in mouse cerebellum. Proc. Natl Acad. Sci. USA. 83, 6193–6197 (1986).

    Article  CAS  Google Scholar 

  29. Norenberg, M.D. Astrocyte responses to CNS injury. J. Neuropathol. Exp. Neurol. 53, 213–220 (1994).

    Article  CAS  Google Scholar 

  30. Karle, J., Woldbye, D.P. & Diemer, N.H. GABAA receptor antisense epilepsy: histological changes following infusion of antisense oligodeoxynucleotide to GABAA receptor γ2 subunit into rat hippocampus. Neurol. Res. 23, 39–46 (2001).

    Article  CAS  Google Scholar 

  31. Nishio, S., Morioka, T., Hisada, K. & Fukui, M. Temporal lobe epilepsy: a clinicopathological study with special reference to temporal neocortical changes. Neurosurg. Rev. 23, 84–89 (2000).

    CAS  PubMed  Google Scholar 

  32. Khurgel, M. et al. Activation of astrocytes during epileptogenesis in the absence of neuronal degeneration. Neurobiol. Dis. 2, 23–35 (1995).

    Article  CAS  Google Scholar 

  33. Datta, S.R., Brunet, A. & Greenberg, M.E. Cellular survival: a play in three Akts. Genes. Dev. 13, 2905–2927 (1999).

    Article  CAS  Google Scholar 

  34. Stambolic, V., Mak, T.W. & Woodgett, J.R. Modulation of cellular apoptotic potential: contributions to oncogenesis. Oncogene 18, 6094–6103 (1999).

    Article  CAS  Google Scholar 

  35. Goldowitz, D. & Hamre, K. The cells and molecules that make a cerebellum. Trends Neurosci. 21, 375–382 (1998).

    Article  CAS  Google Scholar 

  36. Huang, H. et al. PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development 126, 5365–5372 (1999).

    CAS  PubMed  Google Scholar 

  37. Goberdhan, D.C., Paricio, N., Goodman, E.C., Mlodzik, M. & Wilson, C. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes. Dev. 13, 3244–3258 (1999).

    Article  CAS  Google Scholar 

  38. Scanga, S.E. et al. The conserved PI3'K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene 19, 3971–3917 (2000).

    Article  CAS  Google Scholar 

  39. Rakic, P. Role of cell interaction in development of dendritic patterns. Adv. Neurol. 12, 117–134 (1975).

    CAS  PubMed  Google Scholar 

  40. Privat, A. & Drian, M.J. Postnatal maturation of rat Purkinje cells cultivated in the absence of two afferent systems: an ultrastructural study. J. Comp. Neurol. 166, 201–243 (1976).

    Article  CAS  Google Scholar 

  41. Sotelo, C. & Arsenio-Nunes, M.L. Development of Purkinje cells in absence of climbing fibers. Brain Res. 111, 289–295 (1976).

    Article  CAS  Google Scholar 

  42. Morrison, M.E. & Mason, C.A. Granule neuron regulation of Purkinje cell development: striking a balance between neurotrophin and glutamate signaling. J. Neurosci. 18, 3563–3573 (1998).

    Article  CAS  Google Scholar 

  43. Voogd, J. & Glickstein, M. The anatomy of the cerebellum. Trends Neurosci. 21, 370–375 (1998).

    Article  CAS  Google Scholar 

  44. Babb T, B.W. Pathological findings in epilepsy. in Surgical Treatment of Epilepsies (ed. Engel, J.) 511–540 (Raven Press, New York, 1987).

    Google Scholar 

  45. Dorland, W.A. Dorland's Illustrated Medical Dictionary, 2088 (WB Saunders, New York, 2000).

    Google Scholar 

  46. Vinchon, M. et al. Association of Lhermitte-Duclos and Cowden disease: report of a new case and review of the literature. J. Neurol. Neurosurg. Psychiatry 57, 699–704 (1994).

    Article  CAS  Google Scholar 

  47. Roessmann, U. & Wongmongkolrit, T. Dysplastic gangliocytoma of cerebellum in a newborn. Case report. J. Neurosurg. 60, 845–847 (1984).

    Article  CAS  Google Scholar 

  48. Iida, S. et al. A heterozygous frameshift mutation of the PTEN/MMAC1 gene in a patient with Lhermitte-Duclos disease—only the mutated allele was expressed in the cerebellar tumor. Int. J. Mol. Med. 1, 925–929 (1998).

    CAS  PubMed  Google Scholar 

  49. Zhou, X.P. et al. Germline and germline mosaic PTEN mutations associated with a Proteus-like syndrome of hemihypertrophy, lower limb asymmetry, arteriovenous malformations and lipomatosis. Hum. Mol. Genet. 9, 765–768 (2000).

    Article  CAS  Google Scholar 

  50. Zhou, X. et al. Association of germline mutation in the PTEN tumour suppressor gene and Proteus and Proteus-like syndromes. Lancet 358, 210–211 (2001).

    Article  CAS  Google Scholar 

  51. Biesecker, L.G. et al. Proteus syndrome: diagnostic criteria, differential diagnosis, and patient evaluation. Am. J. Med. Genet. 84, 389–395 (1999).

    Article  CAS  Google Scholar 

  52. Griffiths, P.D., Welch, R.J., Gardner-Medwin, D., Gholkar, A. & McAllister, V. The radiological features of hemimegalencephaly including three cases associated with proteus syndrome. Neuropediatrics 25, 140–144 (1994).

    Article  CAS  Google Scholar 

  53. Steward, O., Torre, E.R., Tomasulo, R. & Lothman, E. Seizures and the regulation of astroglial gene expression. Epilepsy. Res. Suppl. 7, 197–209 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Baker for providing Gfap-cre mice and discussing data before publication, K. So, L. Yoong, S. Plyte, W. King, J. Henderson and J. Robertson for technical assistance and S. Pownall, A. Guha and M. Burnham for helpful comments and discussion. V.S. is a recipient of a postdoctoral fellowship from the Cancer Research Institute, New York. This work is supported by the National Cancer Institute of Canada and the Canadian Breast Cancer Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tak W. Mak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backman, S., Stambolic, V., Suzuki, A. et al. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet 29, 396–403 (2001). https://doi.org/10.1038/ng782

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing