Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells

Abstract

Observations of rapid shifts in mitochondrial DNA (mtDNA) variants between generations prompted the creation of the bottleneck theory. A prevalent hypothesis is that a massive reduction in mtDNA content during early oogenesis leads to the bottleneck1,2. To test this, we estimated the mtDNA copy number in single germline cells and in single somatic cells of early embryos in mice. Primordial germ cells (PGCs) show consistent, moderate mtDNA copy numbers across developmental stages, whereas primary oocytes demonstrate substantial mtDNA expansion during early oocyte maturation. Some somatic cells possess a very low mtDNA copy number. We also demonstrated that PGCs have more than 100 mitochondria per cell. We conclude that the mitochondrial bottleneck is not due to a drastic decline in mtDNA copy number in early oogenesis but rather to a small effective number of segregation units for mtDNA in mouse germ cells. These results provide new information for mtDNA segregation models and for understanding the recurrence risks for mtDNA diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models for rapid mtDNA segregation resulting from low segregation unit number in mouse female germ line.
Figure 2: Distribution of mtDNA copy number in single small primordial germ cells of mice from 7.5 to 13.5 dpc.
Figure 3: Distribution of mtDNA copy number in single cells of 5.5- to 6.5-dpc mouse embryos and in single somatic cells of 7.5- to 13.5-dpc mouse embryos.

Similar content being viewed by others

References

  1. Jansen, R.P. & de Boer, B.K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol. Cell. Endocrinol. 145, 81–88 (1998).

    Article  CAS  Google Scholar 

  2. Krakauer, D.C. & Mira, A. Mitochondria and germ-cell death. Nature 400, 125–126 (1999).

    Article  CAS  Google Scholar 

  3. Brown, W.M., George, M. Jr. & Wilson, A.C. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967–1971 (1979).

    Article  CAS  Google Scholar 

  4. Brown, W.M., Prager, E.M., Wang, A. & Wilson, A.C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J. Mol. Evol. 18, 225–239 (1982).

    Article  CAS  Google Scholar 

  5. Ashley, M.V., Laipis, P.J. & Hauswirth, W.W. Rapid segregation of heteroplasmic bovine mitochondria. Nucleic Acids Res. 17, 7325–7331 (1989).

    Article  CAS  Google Scholar 

  6. Blok, R.B., Gook, D.A., Thorburn, D.R. & Dahl, H.H. Skewed segregation of the mtDNA nt 8993 (T → G) mutation in human oocytes. Am. J. Hum. Genet. 60, 1495–1501 (1997).

    Article  CAS  Google Scholar 

  7. Laipis, P.J., Van de Walle, M.J. & Hauswirth, W.W. Unequal partitioning of bovine mitochondrial genotypes among siblings. Proc. Natl. Acad. Sci. USA 85, 8107–8110 (1988).

    Article  CAS  Google Scholar 

  8. Larsson, N.G. et al. Segregation and manifestations of the mtDNA tRNA(Lys) A → G(8344) mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet. 51, 1201–1212 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Olivo, P.D., Van de Walle, M.J., Laipis, P.J. & Hauswirth, W.W. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature 306, 400–402 (1983).

    Article  CAS  Google Scholar 

  10. Birky, C.W., Jr . Relaxed and stringent genomes: why cytoplasmic genes don't obey Mendel's laws. J. Hered. 85, 355–365 (1994).

    Article  Google Scholar 

  11. Hauswirth, W.W. & Laipis, P.J. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc. Natl. Acad. Sci. USA 79, 4686–4690 (1982).

    Article  CAS  Google Scholar 

  12. Marchington, D.R., Macaulay, V., Hartshorne, G.M., Barlow, D. & Poulton, J. Evidence from human oocytes for a genetic bottleneck in an mtDNA disease. Am. J. Hum. Genet. 63, 769–775 (1998).

    Article  CAS  Google Scholar 

  13. Jenuth, J.P., Peterson, A.C., Fu, K. & Shoubridge, E.A. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat. Genet. 14, 146–151 (1996).

    Article  CAS  Google Scholar 

  14. Nass, M.M. Mitochondrial DNA. I. Intramitochondrial distribution and structural relations of single- and double-length circular DNA. J. Mol. Biol. 42, 521–528 (1969).

    Article  CAS  Google Scholar 

  15. Piko, L. & Taylor, K.D. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev. Biol. 123, 364–374 (1987).

    Article  CAS  Google Scholar 

  16. Smith, L.C., Thundathil, J. & Filion, F. Role of the mitochondrial genome in preimplantation development and assisted reproductive technologies. Reprod. Fertil. Dev. 17, 15–22 (2005).

    Article  CAS  Google Scholar 

  17. Steuerwald, N. et al. Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote 8, 209–215 (2000).

    Article  CAS  Google Scholar 

  18. Nogawa, T., Sung, W.K., Jagiello, G.M. & Bowne, W. A quantitative analysis of mitochondria during fetal mouse oogenesis. J. Morphol. 195, 225–234 (1988).

    Article  CAS  Google Scholar 

  19. Iborra, F.J., Kimura, H. & Cook, P.R. The functional organization of mitochondrial genomes in human cells. BMC Biol. 2, 9 (2004).

    Article  Google Scholar 

  20. Legros, F., Malka, F., Frachon, P., Lombes, A. & Rojo, M. Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 117, 2653–2662 (2004).

    Article  CAS  Google Scholar 

  21. Battersby, B.J., Loredo-Osti, J.C. & Shoubridge, E.A. Nuclear genetic control of mitochondrial DNA segregation. Nat. Genet. 33, 183–186 (2003).

    Article  CAS  Google Scholar 

  22. Wallace, D.C. The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement. Gene 354, 169–180 (2005).

    Article  CAS  Google Scholar 

  23. Kono, T., Obata, Y., Yoshimzu, T., Nakahara, T. & Carroll, J. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat. Genet. 13, 91–94 (1996).

    Article  CAS  Google Scholar 

  24. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2003).

    Google Scholar 

  25. Solter, D. & Knowles, B.B. Immunosurgery of mouse blastocyst. Proc. Natl. Acad. Sci. USA 72, 5099–5102 (1975).

    Article  CAS  Google Scholar 

  26. Kaneda, H. et al. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc. Natl. Acad. Sci. USA 92, 4542–4546 (1995).

    Article  CAS  Google Scholar 

  27. Shitara, H. et al. Selective and continuous elimination of mitochondria microinjected into mouse eggs from spermatids, but not from liver cells, occurs throughout embryogenesis. Genetics 156, 1277–1284 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoshimizu, T. et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ. 41, 675–684 (1999).

    Article  CAS  Google Scholar 

  29. D'Herde, K., Callebaut, M., Roels, F., de Prest, B. & van Nassauw, L. Homology between mitochondriogenesis in the avian and amphibian oocyte. Reprod. Nutr. Dev. 35, 305–311 (1995).

    Article  CAS  Google Scholar 

  30. Meirelles, F.V. & Smith, L.C. Mitochondrial genotype segregation during preimplantation development in mouse heteroplasmic embryos. Genetics 148, 877–883 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Takahata and K. Fischer Lindahl for valuable comments and discussions. This work was supported in part by Grants-in-Aid (numbers 14GS0305 and 16770009) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and national funds from the Ministry of Economy, Trade and Industry of Japan and the New Energy and Industrial Technology Development Organization (NEDO (the Nakano research group)).

Author information

Authors and Affiliations

Authors

Contributions

This study was designed by H.S., L.C., J.-I.H. and H.Y. and written by L.C., H.S. and H.Y. The transgenic mice were generated by K.A.; PGCs were prepared by H.S., L.C., T. Horii, Y.N., H.I. and T. Hara and other experimental procedures were done by L.C. and H.S.

Corresponding author

Correspondence to Hiromichi Yonekawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Distribution of mtDNA copy number in single M primordial germ cells from 7.5- to 13.5-dpc mice. (PDF 493 kb)

Supplementary Fig. 2

Distribution of mtDNA copy number in single L primordial germ cells from 7.5- to 13.5-dpc mice. (PDF 479 kb)

Supplementary Fig. 3

Mitochondria in 9.5-dpc mouse primordial germ cell. (PDF 1524 kb)

Supplementary Fig. 4

Mitochondria in 12.5-dpc mouse primordial germ cell. (PDF 2028 kb)

Supplementary Table 1

Primer and probe sequences. (PDF 12 kb)

Supplementary Video 1

Mitochondria in 9.5-dpc mouse primordial germ cell (lower cell). (MOV 895 kb)

Supplementary Video 2

Mitochondria in 12.5-dpc mouse primordial germ cell. (MOV 543 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, L., Shitara, H., Horii, T. et al. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 39, 386–390 (2007). https://doi.org/10.1038/ng1970

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing