Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants

Abstract

Common mitochondrial DNA (mtDNA) haplotypes in humans and mice have been associated with various phenotypes, including learning performance and disease penetrance. Notably, no influence of mtDNA haplotype in cell respiration has been demonstrated. Here, using cell lines carrying four different common mouse mtDNA haplotypes in an identical nuclear background, we show that the similar level of respiration among the cell lines is only apparent and is a consequence of compensatory mechanisms triggered by different production of reactive oxygen species. We observe that the respiration capacity per molecule of mtDNA in cells with the NIH3T3 or NZB mtDNA is lower than in those with the C57BL/6J, CBA/J or BALB/cJ mtDNA. In addition, we have determined the genetic element underlying these differences. Our data provide insight into the molecular basis of the complex phenotypes associated with common mtDNA variants and anticipate a relevant contribution of mtDNA single nucleotide polymorphisms to phenotypic variability in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Respiration capacity and relative growth of transmitochondrial cybrids in galactose and glucose medium.
Figure 2: ROS, defense activity and mtDNA amount in transmitochondrial cybrids with different mtDNA haplotypes.
Figure 3: Adaptation to galactose of transmitochondrial cybrids with different mtDNA haplotypes.
Figure 4: Activity of the Krebs cycle enzymes is influenced by mtDNA haplotype.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ruiz-Pesini, E. et al. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am. J. Hum. Genet. 67, 682–696 (2000).

    Article  CAS  Google Scholar 

  2. Montiel-Sosa, F. et al. Differences of sperm motility in mitochondrial DNA haplogroup U sublineages. Gene 368C, 21–27 (2006).

    Article  Google Scholar 

  3. Tanaka, M., Gong, J.S., Zhang, J., Yoneda, M. & Yagi, K. Mitochondrial genotype associated with longevity. Lancet 351, 185–186 (1998).

    Article  CAS  Google Scholar 

  4. De Benedictis, G. et al. Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J. 13, 1532–1536 (1999).

    Article  CAS  Google Scholar 

  5. Niemi, A.K. et al. Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum. Genet. 112, 29–33 (2003).

    Article  CAS  Google Scholar 

  6. Brown, M.D. et al. The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup J. Hum. Genet. 110, 130–138 (2002).

    Article  CAS  Google Scholar 

  7. Howell, N., Herrnstadt, C., Shults, C. & Mackey, D.A. Low penetrance of the 14484 LHON mutation when it arises in a non-haplogroup J mtDNA background. Am. J. Med. Genet. A. 119, 147–151 (2003).

    Article  Google Scholar 

  8. Wallace, D.C., Ruiz-Pesini, E. & Mishmar, D. mtDNA variation, climatic adaptation, degenerative diseases, and longevity. Cold Spring Harb. Symp. Quant. Biol. 68, 479–486 (2003).

    Article  CAS  Google Scholar 

  9. Dimauro, S. Mitochondrial medicine. Biochim. Biophys. Acta 1659, 107–114 (2004).

    Article  CAS  Google Scholar 

  10. Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V. & Wallace, D.C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226 (2004).

    Article  CAS  Google Scholar 

  11. Johnson, K.R., Zheng, Q.Y., Bykhovskaya, Y., Spirina, O. & Fischel-Ghodsian, N. A nuclear–mitochondrial DNA interaction affecting hearing impairment in mice. Nat. Genet. 27, 191–194 (2001).

    Article  CAS  Google Scholar 

  12. Noben-Trauth, K., Zheng, Q.Y. & Johnson, K.R. Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat. Genet. 35, 21–23 (2003).

    Article  CAS  Google Scholar 

  13. Jenuth, J.P., Peterson, A.C. & Shoubridge, E.A. Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat. Genet. 16, 93–95 (1997).

    Article  CAS  Google Scholar 

  14. Roubertoux, P.L. et al. Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat. Genet. 35, 65–69 (2003).

    Article  CAS  Google Scholar 

  15. Carelli, V. et al. Respiratory function in cybrid cell lines carrying European mtDNA haplogroups: implications for Leber's hereditary optic neuropathy. Biochim. Biophys. Acta 1588, 7–14 (2002).

    Article  CAS  Google Scholar 

  16. Battersby, B.J. & Shoubridge, E.A. Selection of a mtDNA sequence variant in hepatocytes of heteroplasmic mice is not due to differences in respiratory chain function or efficiency of replication. Hum. Mol. Genet. 10, 2469–2479 (2001).

    Article  CAS  Google Scholar 

  17. Herrnstadt, C. & Howell, N. An evolutionary perspective on pathogenic mtDNA mutations: haplogroup associations of clinical disorders. Mitochondrion 4, 797–798 (2004).

    Article  Google Scholar 

  18. Acin-Perez, R. et al. An intragenic suppressor in the cytochrome c oxidase I gene of mouse mitochondrial DNA. Hum. Mol. Genet. 12, 329–339 (2003).

    Article  CAS  Google Scholar 

  19. Bai, Y. & Attardi, G. The mtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the enzyme. EMBO J. 17, 4848–4858 (1998).

    Article  CAS  Google Scholar 

  20. Acin-Perez, R. et al. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol. Cell 13, 805–815 (2004).

    Article  CAS  Google Scholar 

  21. Loveland, B., Wang, C.R., Yonekawa, H., Hermel, E. & Lindahl, K.F. Maternally transmitted histocompatibility antigen of mice: a hydrophobic peptide of a mitochondrially encoded protein. Cell 60, 971–980 (1990).

    Article  CAS  Google Scholar 

  22. Bayona-Bafaluy, M.P. et al. Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Res. 31, 5349–5355 (2003).

    Article  CAS  Google Scholar 

  23. Beckman, K.B. & Ames, B.N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).

    Article  CAS  Google Scholar 

  24. Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002).

    Article  CAS  Google Scholar 

  25. Lee, H.C. & Wei, Y.H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int. J. Biochem. Cell Biol. 37, 822–834 (2005).

    Article  CAS  Google Scholar 

  26. Geromel, V. et al. Superoxide-induced massive apoptosis in cultured skin fibroblasts harboring the neurogenic ataxia retinitis pigmentosa (NARP) mutation in the ATPase-6 gene of the mitochondrial DNA. Hum. Mol. Genet. 10, 1221–1228 (2001).

    Article  CAS  Google Scholar 

  27. Lee, H.C., Yin, P.H., Chi, C.W. & Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 9, 517–526 (2002).

    Article  CAS  Google Scholar 

  28. Liu, C.S. et al. Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic. Res. 37, 1307–1317 (2003).

    Article  CAS  Google Scholar 

  29. Nulton-Persson, A.C. & Szweda, L.I. Modulation of mitochondrial function by hydrogen peroxide. J. Biol. Chem. 276, 23357–23361 (2001).

    Article  CAS  Google Scholar 

  30. Tretter, L. & Adam-Vizi, V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of α-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J. Neurosci. 20, 8972–8979 (2000).

    Article  CAS  Google Scholar 

  31. Gardner, P.R., Nguyen, D.D. & White, C.W. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. Natl. Acad. Sci. USA 91, 12248–12252 (1994).

    Article  CAS  Google Scholar 

  32. Gardner, P.R., Raineri, I., Epstein, L.B. & White, C.W. Superoxide radical and iron modulate aconitase activity in mammalian cells. J. Biol. Chem. 270, 13399–13405 (1995).

    Article  CAS  Google Scholar 

  33. Zhao, H. et al. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am. J. Hum. Genet. 74, 139–152 (2004).

    Article  CAS  Google Scholar 

  34. Prezant, T.R. et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat. Genet. 4, 289–294 (1993).

    Article  CAS  Google Scholar 

  35. Reid, F.M., Vernham, G.A. & Jacobs, H.T. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Hum. Mutat. 3, 243–247 (1994).

    Article  CAS  Google Scholar 

  36. Guan, M.X. et al. The deafness-associated mitochondrial DNA mutation at position 7445, which affects tRNASerUCN precursor processing, has long-range effects on NADH dehydrogenase subunit ND6 gene expression. Mol. Cell. Biol. 18, 5868–5879 (1998).

    Article  CAS  Google Scholar 

  37. Finkel, T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254 (2003).

    Article  CAS  Google Scholar 

  38. Chomyn, A. et al. Platelet-mediated transformation of mtDNA-less human cells: analysis of phenotypic variability among clones from normal individuals—and complementation behavior of the tRNALys mutation causing myoclonic epilepsy and ragged red fibers. Am. J. Hum. Genet. 54, 966–974 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. King, M.P. & Attardi, G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503 (1989).

    Article  CAS  Google Scholar 

  40. Gallardo, M.E. et al. m627G>A, a recurrent mutation in the human mitochondrial DNA that reduce cytochrome c oxidase activity and is associated with tumors. Hum. Mutat. 27, 575–582 (2006).

    Article  CAS  Google Scholar 

  41. Staden, R., Beal, K.F. & Bonfield, J.K. The Staden package, 1998. Methods Mol. Biol. 132, 115–130 (2000).

    CAS  PubMed  Google Scholar 

  42. Hofhaus, G., Shakeley, R.M. & Attardi, G. Use of polarography to detect respiration defects in cell cultures. Methods Enzymol. 264, 476–483 (1996).

    Article  CAS  Google Scholar 

  43. Fernandez-Vizarra, E., Lopez-Perez, M.J. & Enriquez, J.A. Isolation of biogenetically competent mitochondria from mammalian tissues and cultured cells. Methods 26, 292–297 (2002).

    Article  Google Scholar 

  44. Wang, H. & Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612–616 (1999).

    Article  CAS  Google Scholar 

  45. Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).

    Article  CAS  Google Scholar 

  46. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  47. Enriquez, J.A., Fernandez-Silva, P., Perez-Martos, A., Lopez-Perez, M.J. & Montoya, J. The synthesis of mRNA in isolated mitochondria can be maintained for several hours and is inhibited by high levels of ATP. Eur. J. Biochem. 237, 601–610 (1996).

    Article  CAS  Google Scholar 

  48. Enriquez, J.A., Chomyn, A. & Attardi, G. MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNALys and premature translation termination. Nat. Genet. 10, 47–55 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Moraes and E. Shoubridge for the NZB hepatocytes; E. Ruiz-Pesini, A. Barrientos, C. López-Otin and M. Palacín for comments on the manuscript; and S. Morales for technical assistance. Our work was supported by the Spanish Ministry of Education (SAF2003-00103), the Instituto de Salud Carlos III (REDEMETH-G03/054, REDCIEN C03/06-Grupo RC-N34-3 yr ECEMECRE G03/011), the European Union (EUMITOCOMBAT-LSHM-CT-2004-503116), Group of Excellence grant DGA (B55) and Fundación Ramón Areces. R.M.-L. and R.A.-P. are supported by a predoctoral fellowship from the Spanish Ministry of Education and M.E.G. is supported by an I3P postdoctoral contract from the CSIC, Spain.

Author information

Authors and Affiliations

Authors

Contributions

This study was designed and the paper was written by P.F.-S., A.P.-M., S.R.d.C. and J.A.E.; the wild-type cybrid cell line was constructed and phenotype assessed by R.M.-L. and R.A.-P.; the TmND6ko mtDNA mutant cell line was generated and characterized by N.M.; and the mtDNA resequencing strategy was designed by, and full mtDNA sequencing performed by, M.E.G.

Corresponding author

Correspondence to José Antonio Enríquez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

RFLP analysis to detect the possible presence of L929 mtDNA in the transmitochondrial cell lines. (PDF 112 kb)

Supplementary Fig. 2

Protein levels for specific subunits of the mtETC complexes in the different mtDNA haplotypes. (PDF 104 kb)

Supplementary Fig. 3

ND3/ND4 relative transcript levels in the transmitochondrial cell lines. (PDF 98 kb)

Supplementary Table 1

mtDNA nucleotide differences between C57BL/6J and NZB/B1NJ. (PDF 18 kb)

Supplementary Table 2

Primer sequences. (PDF 80 kb)

Supplementary Methods (PDF 96 kb)

Supplementary Note (PDF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Loshuertos, R., Acín-Pérez, R., Fernández-Silva, P. et al. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat Genet 38, 1261–1268 (2006). https://doi.org/10.1038/ng1897

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing