Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constitutional relaxation of insulin–like growth factor II gene imprinting associated with Wilms' tumour and gigantism

Abstract

We have examined the imprinting of the insulin–like growth factor II gene (IGF2) in ten normal kidney samples from children with renal embryonal neoplasms. In kidney samples from nine children with normal growth profiles, IGF2 mRNA was transcribed monoallelically, consistent with normal imprinting of the gene. But in one child who had generalized somatic overgrowth, IGF2 was transcribed from both alleles in her kidney, peripheral blood leukocytes and Wilms' tumour. These findings suggest that a defect in genomic imprinting can occur constitutionally, leading to growth abnormalities and predisposition to Wilms' tumour.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. DeChiara, M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Ogawa, O. et al. Relaxation of insulin-like growth factor gene imprinting implicated in Wilms' tumour. Nature 362, 749–751 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Ohlsson, R. et al. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nature Genet. 4, 94–97 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Giannoukakis, N., Deal, C., Paquette, J., Goodyer, C.G., Polychronakos, C. Parental genomic imprinting of the human IGF2 gene. Nature Genet. 4, 98–101 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Moore, T. & Haig, D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45–49 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Reik, W. Genomic imprinting and genetic disorders in man. Trends Genet. 5, 331–336 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Koufos, A.I. et al. Familial Wiedemann-Beckwith syndrome and a second Wilms' tumor locus both map to 11p15.5. Am. J. hum. Genet. 44, 711–719 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ping, A.J. et al. Genetic linkage of Beckwith-Wiedemann syndrome to 11 p15 Am. J. hum. Genet. 44, 720–723 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Aleck, K.A. & Hadro, T.A. Dominant inheritance of Wiedemann-Beckwith syndrome: further evidence for transmission of ‘unstable premutation’ through carrier women. Am. J. med. Genet. 33, 155–160 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Moutou, C., Junien, C., Henry, I. & Bonaiti-Pellie, C. Beckwith-Wiedemann syndrome: a demonstration of the mechanisms responsible for the excess of transmitting females. J. med. Genet. 29, 217–220 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Viljoen, D. & Ramesar, R. Evidence for paternal imprinting in familial Beckwith-Wiedemann syndrome. J. med. Genet. 29, 221–225 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maldonado, V., Gaynon, P.S. & PoznanskiA, K. Cerebralgigantism associated with Wilms' tumor Am. J. Dis. Child 138, 486–488 (1984).

    CAS  PubMed  Google Scholar 

  14. Reeve, A.E., Eccles, M.R., Wilkins, R.J.W., Bell, G.I. & Millow, L.J. Expression of insulin-like growth factor-ll transcripts in Wilms' tumour. Nature 317, 258–260 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Scott, J. et al. Insulin-like growth factor-II gene expression in Wilms' tumour and embryonic tissues. Nature 317, 261–262 (1985).

    Google Scholar 

  16. Bunin, G.R., Kramer, S., Marrero, O. & Meadows, A.T. Gestational risk factors for Wilms' tumor: results of a case-control study. Cancer Res. 47, 2972–2977 (1987).

    CAS  PubMed  Google Scholar 

  17. Little, M.H., Clarke, J., Byrne, J., Dunn, R. & Smith, P.J. Allelic loss on chromosome 11 p is a less frequent event in bilateral than in unilateral Wilms' tumours. Eur. J. Cancer 28A, 1879–1883 (1992).

    Google Scholar 

  18. Mannens, M. et al. Loss of heterozygosity in Wilms' tumors, studied for six putative tumor suppressor regions, is limited to chromosome 11. Cancer Res. 50, 3279–3283 (1990).

    CAS  PubMed  Google Scholar 

  19. Chao, L-Y. et al. Genetic mosaicism in normal tissues of Wilms' tumour patients. Nature Genet. 3, 127–131 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Henry, I. et al. Somatic mosaicism for partial paternal isodisomy in Wiedemann-Beckwith syndrome: a post-fertilisation event. Eur. J. hum. Genet. 1, 19–29 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Henry, I. et al. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 361, 665–667 (1991).

    Article  Google Scholar 

  22. Grundy, P. et al. Chromosome 11 uniparental isodisomy predisposing to embryonal neoplasms. Lancet 338, 1079–1080 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Ferguson-Smith, A.C., Cattanach, B.M., Barton, S.C., Beechey, C.V. & Surani, M.A. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 361, 667–670 (1991).

    Article  Google Scholar 

  24. Bartolomei, M.S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 361 153–155 (1991).

    Article  Google Scholar 

  25. Tadokoro, K., Fujii, H., Inoue, T. & Yamada, M. Polymerase chain reaction (PCR) for detection of Apal polymorphism at the insulin like growth factor II gene (IGF2). Nucl. Acids Res. 19, 6961 (1991).

    Article  Google Scholar 

  26. Dilworth, D.D. & McCarrey, J.R. Single-step elimination of contaminating DNA prior to reverse transcriptase PCR. PCR Meth. Applic. 1, 279–282 (1992).

    Article  CAS  Google Scholar 

  27. Hamill, P.V.V. NHCS growth curves for children. US Department of Health Education and Welfare (PHS) 78–1650, 1–74 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, O., Becroft, D., Morison, I. et al. Constitutional relaxation of insulin–like growth factor II gene imprinting associated with Wilms' tumour and gigantism. Nat Genet 5, 408–412 (1993). https://doi.org/10.1038/ng1293-408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1293-408

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing