Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes

Abstract

We have localized the DNA sequences required for mitotic centromere function on the human Y chromosome. Analysis of 33 rearranged Y chromosomes allowed the centromere to be placed in interval 8 of a 24–interval deletion map. Although this interval is polymorphic in size, it can be as small as 500kb. It contains alphoid satellite DNA and 300kb of adjacent Yp sequences. Chromosomes with rearrangements in this region were analysed in detail. Two translocation chromosomes and one monocentric isochromosome had breakpoints within the alphoid array. Of 12 suppressed Y centromeres on translocation chromosomes and dicentric isochromosomes that were also analysed two showed deletions one of which only removed alphoid DNA. These results indicate that alphoid DNA is a functional part of the Y chromosome centromere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Murray, A.W & Szostak,, J.W. Construction of artificial chromosomes in yeast. Nature 305, 189–193 (1983).

    Article  CAS  Google Scholar 

  2. Hahnenberger, K.M., Baum, M.P., Polizzi, C.M., Carbon, J. & Clarke, L. Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc. natn. Acad. Sci. U.S.A. 86, 577–581 (1989).

    Article  CAS  Google Scholar 

  3. Farr, C., Fantes, J., Goodfellow, P. & Cooke, H. Functional reintroduction of human telomeres into mammalian cells. Proc. natn. Acad. Sci. U.S.A. 88, 7006–7010 (1991).

    Article  CAS  Google Scholar 

  4. Barnett, M.A. et al. Telomere directed fragmentation of mammalian chromosomes. Nucl. Acids Res. 21, 27–36 (1993).

    Article  CAS  Google Scholar 

  5. Heinzel, S.S., Krysan, P.J., Tran, C.T. & Calos, M.P. Autonomous DNA replication in human cells is affected by the size and the source of the DNA. Molec. cell. Biol. 11, 2263–2272 (1991).

    Article  CAS  Google Scholar 

  6. Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980).

    Article  CAS  Google Scholar 

  7. Niwa, O., Matsumoto, T. & Yanagida, M. Construction of a mini-chromosome by deletion and its mitotic and meiotic behavior in fission yeast. Molec. Gen. Genet. 203, 397–405 (1986).

    Article  CAS  Google Scholar 

  8. Niwa, O., Matsumoto, T., Chikashige, Y. & Yanagida, M. Characterization of Schizosaccharomyces pombe minichromosome deletion derivatives and a functional allocation of their centromere. EMBO J. 8, 3045–3052 (1989).

    Article  CAS  Google Scholar 

  9. Tyler-Smith, C. & Brown, W.R.A. Structure of the major block of alphoid satellite DNA on the human Y chromosome. J. molec. Biol. 195, 457–470 (1987).

    Article  CAS  Google Scholar 

  10. Cooper, K.F., Fisher, R.B. & Tyler-Smith, C. Structure of the pericentric long arm region of the human Y chromosome. J. molec. Biol. 228, 421–432 (1992).

    Article  CAS  Google Scholar 

  11. Cooper, K.F., Fisher, R.B. & Tyler-Smith, C. Structure of the sequences adjacent to the centromeric alphoid satellite DNA array on the human Y chromosome. J. molec. Biol. 230, 787–799 (1993).

    Article  CAS  Google Scholar 

  12. Foote, S., Vollrath, D., Hilton, A. & Page, D.C. The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science 258, 60–66 (1992).

    Article  CAS  Google Scholar 

  13. Haaf, T., Warburton, P.E. & Willard, H.F. Integration of human α-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell 70, 681–696 (1992).

    Article  CAS  Google Scholar 

  14. Grady, D.L. et al. Highly conserved repetitive DNA sequences are present at human centromeres. Proc. natn. Acad. Sci. U.S.A. 89, 1695–1699 (1992).

    Article  CAS  Google Scholar 

  15. Hadlaczky, G. et al. Centromere formation in mouse eel Is cotransformed with human DNA and a dominant marker gene. Proc. natn. Acad. Sci. U.S.A. 88, 8106–8110 (1991).

    Article  CAS  Google Scholar 

  16. Cooper, K.F. & Tyler-Smith, C. The putative centromere-forming sequence λCM8 is a single copy sequence and is not a component of most human centromeres. Hum. molec. Genet. 1, 753–754 (1992).

    Article  CAS  Google Scholar 

  17. Oakey, R. & Tyler-Smith, C. Y chromosome DNA haplotyping suggests that most European and Asian men are descended from one of two males. Genomics 7, 325–330 (1990).

    Article  CAS  Google Scholar 

  18. Emrie, P.A., Jones, C., Hofmann, T. & Fisher, J.H. The coding sequence for the human 18,000-dalton hydrophobic pulmonary surfactant protein is located on chromosome 2 and identifies a restriction fragment length polymorphism. Somatic Cell molec. Gen. 14, 105–110 (1988).

    Article  CAS  Google Scholar 

  19. Moyzis, R.K. et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. natn. Acad. Sci. U.S.A. 85, 6622–6626 (1988).

    Article  CAS  Google Scholar 

  20. Münke, M. et al. Molecular detection of a Yp/18 translocation in a 45, X holoprosencephalic male. Hum. Genet. 80, 219–223 (1988).

    Article  Google Scholar 

  21. Affara, N.A. et al. Regional assignment of Y-linked DNA probes by deletion mapping and their homology with X-chromosome and autosomal sequences. Nucl. Acids Res. 14, 5353–5373 (1986).

    Article  CAS  Google Scholar 

  22. Maraschio, P. et al. Deletion of specific sequences or modification of centromeric chromatin are responsible for Y chromosome centromere inactivation. Hum. Genet. 85, 491–494 (1990).

    Article  CAS  Google Scholar 

  23. Smith, G.P. Evolution of repeated DNA sequences by unequal crossover. Science 191, 528–535 (1976).

    Article  CAS  Google Scholar 

  24. Crolla, J.A., Dennis, N.R. & Jacobs, P.A. A non-isotopic in situ hybridisation study of the chromosomal origin of 15 supernumerary marker chromosomes in man. J. med. Genet. 29, 699–703 (1992).

    Article  CAS  Google Scholar 

  25. Rauch, A. et al. A study of ten small supernumerary (marker) chromosomes identified by fluorescence in situ hybridization (FISH). Clin. Genet. 42, 84–90 (1992).

    Article  CAS  Google Scholar 

  26. Voullaire, L.E., Slater, H.R., Petrovic, V. & Choo, K.H.A. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am. J. hum. Genet. 52, 1153–1163 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mann, C. & Davis, R.W. Instability of dicentric plasmids in yeast. Proc. natn. Acad. Sci. U.S.A. 80, 228–232 (1983).

    Article  CAS  Google Scholar 

  28. Koshland, D., Rutledge, L., Fitzgerald-Hayes, M. & Hartwell, L.H. A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell 48, 801–812 (1987).

    Article  CAS  Google Scholar 

  29. Jäger, D. & Philippsen, P. Stabilization of dicentric chromosomes in Saccharomyces cerevisiae by telomere addition to broken ends or by centromere deletion. EMBO J. 8, 247–254 (1989).

    Article  Google Scholar 

  30. Maserati, E. et al. A 45, X male with a Yp/18 translocation. Hum. Genet. 74, 126–132 (1986).

    Article  CAS  Google Scholar 

  31. Nakahori, Y., Mitani, K., Yamada, M. & Nakagome, Y. A human Y-chromosome specific repeated DNA family (DYZ1) consists of a tandem array of pentanucleotides. Nucl. Acids Res. 14, 7569–7580 (1986).

    Article  CAS  Google Scholar 

  32. Affara, N.A. et al. Mapping the testis determinants by an analysis of Y-specific sequences in males with apparent XX and XO karyotypes and females with XY karyotypes. Nucl. Acids Res. 15, 7325–7342 (1987).

    Article  CAS  Google Scholar 

  33. Chandley, A.C. et al. Deleted Yq in the sterile son of a man with a satellited Y chromosome (Yqs). J. med. Genet. 26, 145–153 (1989).

    Article  CAS  Google Scholar 

  34. Chandley, A.C. et al. Short arm dicentric Y chromosome with associated statural defects in a sterile man Hum. Genet. 73, 350–353 (1986).

    Article  CAS  Google Scholar 

  35. O'Reilly, A.J. et al. A molecular deletion map of the Y chromosome long arm defining X and autosomal homologous regions and the localisation of the HYA locus to the proximal region of the Yq euchromatin. Hum. molec. Genet. 1, 379–385 (1992).

    Article  CAS  Google Scholar 

  36. Chandley, A.C. & Edmond, P. Meiotic studies on a subfertile patient with a ring Y chromosome. Cytogenetics 10, 295–304 (1971).

    Article  CAS  Google Scholar 

  37. Petrovic, V. et al. Minute Y chromosome derived marker in a child with gonadoblastoma: cytogenetic and DNA studies. J. med. Genet. 29, 542–546 (1992).

    Article  CAS  Google Scholar 

  38. Müller, U., Kirkels, V.G.H.J. & Scheres, J.M.J. Absence of Turner stigmata in a 46,XYp–female. Hum. Genet. 90, 239–242 (1992).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyler-Smith, C., Oakey, R., Larin, Z. et al. Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes. Nat Genet 5, 368–375 (1993). https://doi.org/10.1038/ng1293-368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1293-368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing