Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-linked situs abnormalities result from mutations in ZIC3

Abstract

Vertebrates position unpaired organs of the chest and abdomen asymmetrically along the left–right (LR) body axis. Each structure comes to lie non-randomly with respect to the midline in an overall position designated situs solitus, exemplified in humans by placement of the heart, stomach and spleen consistently to the left. Aberrant LR axis development can lead to randomization of individual organ position (situs ambiguus) or to mirror-image reversal of all lateralized structures (situs in versus)1. Previously we mapped a locus for situs abnormalities in humans, HTX1, to Xq26.2 by linkage analysis in a single family (LR1) and by detection of a deletion in an unrelated situs ambiguus male (Family LR2; refs 2,3). From this chromosomal region we have positionally cloned ZIC3, a gene encoding a putative zinc-finger transcription factor. One frameshift, two missense and two nonsense mutations have been identified in familial and sporadic situs ambiguus. The frameshift allele is also associated with situs inversus among some heterozygous females, suggesting that ZIC3 functions in the earliest stages of LR-axis formation. ZIC3, which has not been previously implicated in vertebrate LR-axis development, is the first gene unequivocally associated with human situs abnormalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kosaki, K. & Casey, B. Genetics of human left-right axis malformations. Semin. Cell Dev. Biol. (in the press).

  2. Casey, B., Devoto, M., Jones, K.L. & Ballabio, A. Mapping a gene for familial situs abnormalities to human chromosome Xq24-q27. 1.. Nature Genet. 5, 403–407 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Ferrero, G.B. et al. A submicroscopic deletion in Xq26 associated with familial situs ambiguussitus ambiguus. Am. J. Hum. Genet. 61, 395–401 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Larsen, W.J., Human Embryology (Churchill-Livingstone, New York, 1993).

    Google Scholar 

  5. Britz-Cunningham, S.H., Shah, M.M., Zuppan, C.W. & Fletcher, W.H. Mutations of the connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N. Engl. J. Med. 332, 1323–1329 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Gebbia, M., Towbin, J.A. & Casey, B. Failure to detect connexin43 mutations in 38 cases of sporadic and familial heterotaxy. Circulation 94, 1909–1912 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Penman-Splitt, M., Tsai, M.Y., Burn, J. & Goodship, J.A. Absence of mutations in the regulatory domain of the gap junction protein connexin 43 in patients with visceroatrial heterotaxy. Heart 77, 369–370 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pilia, G. et al. YAC/STS map of 9 Mb of Xq26 at 100-kb resolution, localizing 6 ESTs, 6 genes, and 32 genetic markers. Genomics 34, 55–62 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Aruga, J. et al. The mouse Zic gene family. J. Biol. Chem. 271, 1043–1047 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Aruga, J. et al. Identification and characterization of Zic4, a new member ofthe mouse Zic gene family. Gene 172, 291–294 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Nagai, T. et al. The expression of the mouse Zic7, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev.Biol. 182, 299–313 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Benedyk, M.J., Mullen, J.R. & DiNardo, S. odd-paired: a zinc finger pair-rule protein required for the tirnely activation of engrailed and wingless in Drosophila embryos. Genes Dev. 8, 105–117 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Cimbora, D.M. & Sakonju, S. Drosophila midgut morphogenesis requires the function of the segmentation gene odd-paired. Dev. Biol. 169, 580–595 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Levin, M., Johnson, R.L., Stern, C.D., Kuehn, M. & Tabin, C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82, 803–814 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Levin, M. Left-right asymmetry in vertebrate embryogenesis. Bioessays 19, 287–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. j Biol. Chem. 266, 196–197 (1991).

    Google Scholar 

  17. Casey, B. et al. Autosomal dominant transmission of familial laterality defects. Am. J. Med. Genet. 61, 325–328 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Lowe, L.A. et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Collignon, J., Varlet, I. & Robertson, E.J. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Meno, C. et al. Left-right asymmetric expression of the TGFβ-family member lefty in mouse embryos. Nature 381, 151–155 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Isaac, A., Sargent, M.G. & Cooke, J. Control of vertebrate left-right asymmetry by a snail-related zinc finger gene. Science 275, 1301–1304 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Danos, M.C. & Yost, H.J. Linkage of cardiac left-right asymmetry and dorsal-anterior development in Xenopus. Development 121, 1467–1474 (1995).

    CAS  PubMed  Google Scholar 

  23. Danos, M.C. & Yost, H.J. Role of notochord in specification ofthe cardiac left-right axis in zebrafish and Xenopus. Dev. Biol. 177, 96–103 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Lohr, J.L., Danos, M.C. & Yost, H.J. Left-right asymmetry of a noda/-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development, 124, 1465–1472 (1997).

    CAS  Google Scholar 

  25. Hyatt, B.A., Lohr, J.L. & Yost, H.J. Initiation of vertebrate left-right axis formation by maternal Vg1. Nature 384, 62–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Burke, D., Carle, G. & Olson, M. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Wapenaar, M.C. et al. A YAC-based binning strategy for facilitating the rapid assembly of cosmid contigs: 1.6 Mb of overlapping cosmids in Xp22. Hum. Mol. Genet. 3, 1155–1161 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Orita, M., Suzuki, Y., Sekiya, T. & Haayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett Casey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebbia, M., Ferrero, G., Pilia, G. et al. X-linked situs abnormalities result from mutations in ZIC3. Nat Genet 17, 305–308 (1997). https://doi.org/10.1038/ng1197-305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1197-305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing