Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the testis/liver isoform of the phosphorylase kinase γ subunit (PHKG2) cause autosomal liver glycogenosis in the gsd rat and in humans

Abstract

Heritable deficiency of phosphorylase kinase (Phk), a regulatory enzyme of glycogen metabolism, is responsible for 25% of all cases of glycogen storage disease and occurs with a frequency of 1 in 100,000 births. It is genetically and clinically heterogeneous, occurring in X-linked and autosomal-recessive forms and exhibiting various patterns of principally affected tissues (liver only, muscle only, liver and muscle, liver and kidney, heart only)1. This heterogeneity is thought to reflect the enzyme's structural complexity [subunit composition, (αβγδ)4] and isoform diversity. Two isoforms encoded by separate genes are known for the subunits α (muscle [αM] and liver [αL isoforms)2 and γ (muscle [γM] and testis [γT] isoforms)3–6, whereas only one gene appears to exist for the subunit β7. The subunit δ is calmodulin; identical calmodulins are expressed from three different human genes8. Additional isoform diversity arises by differential mRNA splicing of the αM, αL and β subunits9,10. Mutations responsible for the various forms of Phk deficiency are sought in those subunit/isoform genes with a matching chromosomal location and tissue-specificity of expression. We report here that autosomal liver-specific Phk deficiency is associated with mutations in the gene encoding the testis/liver isoform of the catalytic γ subunit (PHKG2). We found homozygous PHKG2 mutations in three human patients of consanguineous parentage and in the gsd (glycogen storage disease) rat strain, which is thus identified as an animal model for the human disorder. One human mutation is a single base-pair insertion in codon 89 that causes a frameshift and premature chain termination. The three other mutations result in non-conservative replacements of amino acid residues (V106E, G189E, D215N) that are highly conserved within the catalytic core regions of all protein kinases. These are the first mutations to be reported for an autosomal form of Phk deficiency. The findings suggest that the PHKG2 gene product is the predominant isoform of the catalytic γ subunit of Phk not only in testis but also in liver, erythrocytes and, possibly, other non-muscle tissues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Stylianos E. Antonarakis, Brian G. Skotko, … Roger H. Reeves

References

  1. Chen, Y.T. & Burchell, A. Glycogen storage diseases, in The Metabolic and Molecular Bases of Inherited Disease Vol. I, 7th edn (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D. ) 935–965 (McGraw-Hill, New York, 1995).

    Google Scholar 

  2. Davidson, J.J. et al. cDNA cloning of a liver isoform of the phosphorylase kinase α subunit and mapping of the gene to Xp22.2–p22.1, the region of human X-linked liver glycogenosis. Proc. Natl. Acad. Sci. USA 89, 2096–2100 (1992).

    Article  CAS  Google Scholar 

  3. Chamberlain, J.S., VanTuinen, P., Reeves, A.A., Philip, B.A. & Caskey, C.T. Isolation of cDNA clones for the catalytic γsubunit of mouse muscle phosphorylase kinase: expression of mRNA in normal and Phk mutant mice. Proc. Natl. Acad. Sci. USA 84, 2886–2890 (1987).

    Article  CAS  Google Scholar 

  4. Bender, P.K. & Emerson, C.P. Jr. Skeletal muscle phosphorylase kinase catalytic subunit mRNAs are expressed In heart tissue but not in liver. J. Biol. Chem. 262, 8799–8805 (1987).

    CAS  PubMed  Google Scholar 

  5. Hanks, S.K. Messenger ribonucleic acid encoding an apparent isoform of phosphorylase kinase catalytic subunit is abundant in the adult testis. Mol. Endocr. 3, 110–116 (1989).

    Article  CAS  Google Scholar 

  6. Calalb, M.B., Fox, D.T. & Hanks, S.K. Molecular cloning and enzymatic analysis of the rat homolog of “PhK-γT”, an isoform of phosphorylase kinase catalytic subunit. J. Biol. Chem. 267, 1455–1463 (1992).

    CAS  PubMed  Google Scholar 

  7. Wüllrich-Schmoll, A. & Kilimann, M.W. Structure of the human gene encoding the phosphorylase kinase βsubunit (PHKB). Eur. J. Biochem. 238, 374–380 (1996).

    Article  Google Scholar 

  8. Berchtold, M.W., Egli, R., Rhyner, J.A., Hameister, H. & Strehler, E.E. Localization of the human bona fide calmodulin genes CALM1, CALM2, and CALM3 to chromosomes 14q24–q31, 2p21.1–21.3, and 19q13.2–q13.3. Genomics 16, 461–465 (1993).

    Article  CAS  Google Scholar 

  9. Harmann, B., Zander, N.F. & Kilimann, M.W. Isoform diversity of phosphorylase kinase α and β subunits generated by alternative RNA splicing. J. Biol. Chem. 266, 15631–15637 (1991).

    CAS  PubMed  Google Scholar 

  10. Wüllrich, A., Hamacher, C., Schneider, A. & Kilimann, M.W. The multiphosphorylation domain of the phosphorylase kinase αM and αL subunits is a hotspot of differential mRNA processing and of molecular evolution. J. Biol. Chem. 268, 23208–23214 (1993).

    PubMed  Google Scholar 

  11. Francke, U., Darras, B.T., Zander, N.F. & Kilimann, M.W. Assignment of human genes for phosphorylase kinase subunits α(PHKA) to Xq12–q13 and β (PHKB) to 16q12–q13 Am. J. Hum. Genet. 45, 276–282 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schneider, A., Davidson, J.J., Wüllrich, A. & Kilimann, M.W. Phosphorylase kinase deficiency in l-strain mice is associated with a frameshift mutation in the αsubunit muscle isoform. Nature Genet. 5, 381–385 (1993).

    Article  CAS  Google Scholar 

  13. Wehner, M., Clemens, P.R., Engel, A.G. & Kilimann, M.W. Human muscle glycogenosis due to phosphorylase kinase deficiency associated with a nonsense mutation in the muscle isoform of the αsubunit. Hum. Mol. Genet. 3, 1983–1987 (1994).

    Article  CAS  Google Scholar 

  14. Burwinkel, B., Shin, Y.S., Bakker, H.D., Deutsch, J., Lozano, M.J., Maire, I. & Kilimann, M.W. Mutation hotspots in the PHKA2 gene in X-linked liver glycogenosis due to phosphorylase kinase deficiency with atypical activity in blood cells (XLG2). Hum. Mol. Genet. 5, 653–658 (1996).

    Article  CAS  Google Scholar 

  15. Hendricks, J., Dams, E., Coucke, P., Lee, P., Fernandas, J. & Willems, P.J. X-linked liver glycogenosis type II (XLGII) is caused by mutations in PHKA2, the gene encoding the liver alpha subunit of phosphorylase kinase. Hum. Mol. Genet. 5, 649–652 (1996).

    Article  Google Scholar 

  16. Jones, T.A., da Cruz e Silva, E.F., Spurr, N.K., Sheer, D. & Cohen, P.T.W. Localisation of the gene encoding the catalytic γ subunit of phosphorylase kinase to human chromosome bands 7p12–q21. Biochim. Biophys. Acta 1048, 24–29 (1990).

    Article  CAS  Google Scholar 

  17. Whitmore, S.A. et al. Isolation and characterization of transcribed sequences from a chromosome 16 hn-cDNA library and the physical mapping of genes and transcribed sequences using a high-resolution somatic cell panel of human chromosome 16. Genomics 20, 169–175 (1994).

    Article  CAS  Google Scholar 

  18. Hug, G., Schubert, W.K. & Chuck, G. Phosphorylase kinase of the liver: deficiency in a girl with increased hepatic glycogen. Science 153, 1534–1535 (1966).

    Article  CAS  Google Scholar 

  19. Lederer, B., Van Hoof, F., Van Den Berghe, G. & Hers, H.G. Glycogen phosphorylase and its converter enzymes in hemolysates of normal human subjects and of patients with type VI glycogen storage disease. A study of phosphorylase kinase deficiency. Biochem. J. 147, 23–35 (1975).

    Article  CAS  Google Scholar 

  20. Lederer, B., Van De Werve, G., De Barsy, Th. & Hers, H.G. The autosomal form of phosphorylase kinase deficiency in man: reduced activity of the muscle enzyme. Biochim. Biophys. Res. Commun. 92, 169–174 (1980).

    Article  CAS  Google Scholar 

  21. Lerner, A., lancu, T.C., Bashan, N., Potashnik, R. & Moses, S. A new variant of glycogen storage disease. Type IXc. Am. J. Dis. Child. 136, 406–410 (1982).

    Article  CAS  Google Scholar 

  22. Søvik, O., deBarsy, Th. & Maehle, B. Phosphorylase kinase deficiency: severe glycogen storage disease with evidence of autosomal recessive mode of inheritance. Eur. J. Pediat. 139, 210 (1982).

    Article  Google Scholar 

  23. Gray, R.G.F., Kumar, D. & Whitfield, A.E. Glycogen phosphorylase b kinase deficiency in three siblings. J. Inher. Metab. Dis. 6, 107 (1983).

    Article  CAS  Google Scholar 

  24. Kikuchi, M., Aikawa, J., Ishizawa, S., Igarashi, Y., Narisawa, K. & Tada, K. Enzymatic analysis in lymphocytes and erythrocytes from six patients with different phenotypes of phosphorylase kinase deficiency. J. Inher. Metab. Dis. 11, 315–318 (1988).

    Article  CAS  Google Scholar 

  25. Madlom, M., Besley, G.T.N., Cohen, P.T.W. & Marrian, V.J. Phosphorylase b kinase deficiency in a boy with glycogenosis affecting both liver and muscle. Eur. J. Pediatr. 149, 52–53 (1989).

    Article  CAS  Google Scholar 

  26. Kagalwalla, A.F., Kagalwalla, Y.A., Al Ajaji, S., Gorka, W. & Ali, M.A. Phosphorylase b kinase deficiency glycogenosis with cirrhosis of the liver. J. Pediatr. 127, 602–605 (1995).

    Article  CAS  Google Scholar 

  27. Clark, D. & Haynes, D. The glycogen storage disease (gsd/gsd) rat. Curr. Topics Cell. Regul. 29, 217–263 (1988).

    Article  CAS  Google Scholar 

  28. Harmann, B. & Kilimann, M.W. cDNA encoding a 59 kDa homolog of ribosomal protein S6 kinase from rabbit liver. FEBS Lett. 273, 248–252 (1990).

    Article  CAS  Google Scholar 

  29. Wehner, M. & Kilimann, M.W. Human cDNA encoding the muscle isoform of the phosphorylase kinase γsubunit (PHKG1). Hum. Genet. 96, 616–618 (1995).

    Article  CAS  Google Scholar 

  30. Hanks, S.K. & Quinn . Protein kinase catalytic domain sequence database: Identification of conserved features of primary structure and classification of family members. Meth. Enzym. 200, 38–62 (1991).

    Article  CAS  Google Scholar 

  31. Owen, D.J., Noble, M.E.M., Garman, E.F., Papageorgiou, A.C. & Johnson, L.N. Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. Structure 3, 467–482 (1995).

    Article  CAS  Google Scholar 

  32. Taylor, S.S. & Radzio-Andzelm, E. Three protein kinase structures define a common motif. Structure 2, 345–355 (1994).

    Article  CAS  Google Scholar 

  33. Chrisman, T.D., Jordan, J.E. & Exton, J.H. Purification of rat liver phosphorylase kinase. J. Biol. Chem. 257, 10798–10804 (1982).

    CAS  PubMed  Google Scholar 

  34. Taira, T. et al. Comparison of glycogen phosphorylase kinases of various rat tissues. J. Biochem. 91, 883–888 (1982).

    Article  CAS  Google Scholar 

  35. Liu, L. et al. The testis isoform of the phosphorylase kinase catalytic subunit (PhK-γT) plays a critical role in regulation of glycogen mobilization in developing lung. J. Biol. Chem. 271, 11761–11766 (1996).

    Article  CAS  Google Scholar 

  36. Nagai, T. et al. Proximal renal tubular acidosis associated with glycogen storage disease, type 9. Acta Paediatr. Scand. 77, 460–463 (1988).

    Article  CAS  Google Scholar 

  37. Sanjad, S.A., Kaddoura, R.E., Nazer, H.M., Akhtar, M. & Sakati, N.A. Fanconi's syndrome with hepatorenal glycogenosis associated with phosphorylase b kinase deficiency. Am. J. Dis. Child. 147, 957–959 (1993).

    CAS  PubMed  Google Scholar 

  38. Willems, P.J., Gerver, W.J.M., Berger, R. & Fernandes, J. The natural history of liver glycogenosis due to phosphorylase kinase deficiency: a longitudinal study of 41 patients. Eur. J. Pediat. 149, 268–271 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred W. Kilimann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maichele, A., Burwinkel, B., Maire, I. et al. Mutations in the testis/liver isoform of the phosphorylase kinase γ subunit (PHKG2) cause autosomal liver glycogenosis in the gsd rat and in humans. Nat Genet 14, 337–340 (1996). https://doi.org/10.1038/ng1196-337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1196-337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing