Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonsense mutations in the C–terminal SH2 region of the GTPase activating protein (GAP) gene in human tumours

Abstract

GTPase Activating Protein (GAP) is involved in down–regulating normal ras proteins and in the signal transduction pathway of some growth factors. We have screened 188 human tumours for mutations in the catalytic domain and at the C terminal SH2 region GAP. Three nonsense mutations in basal cell carcinomas were detected in the SH2 region and no mutations could be demonstrated in the catalytic domain. We conclude that mutations in the SH2 region of GAP may play a role in tumorigenesis and that inactivating mutations of the GAP catalytic domain do not contribute to tumour development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barbacid, M. ras genes. A Rev. Biochem. 56, 779–827 (1987).

    Article  CAS  Google Scholar 

  2. Patterson, H. et al. Activated N-ras controls the transformed phenotype of HT1080 human fibrosarcoma cells. Cell 51, 803–812 (1987).

    Article  Google Scholar 

  3. Field, J., Broek, D., Kataoka, T. & Wigler, M. Guanine nucleotide activation of, and competition between, ras proteins from Saccharomyces Cerevisiae. Molec. cell. Biol. 7, 2128–2133 (1987).

    Article  CAS  Google Scholar 

  4. Trahey, M. & McCormick, F. A cytoplasmic protein stimulates normal p21 ras GTPase, but does not affect oncogenic mutants. Science 238, 542–545 (1987).

    Article  CAS  Google Scholar 

  5. Xu, G. et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62, 599–608 (1990).

    Article  CAS  Google Scholar 

  6. Xu, G. et al. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements IRA mutants of S.cerevisiae. Cell 63, 835–841 (1990).

    Article  CAS  Google Scholar 

  7. Quaife, C.J., Pinkert, C.A., Ornitz, D.M., Palmiter, R.D. & Brinster, R.L. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell 48, 1023–1034 (1987).

    Article  CAS  Google Scholar 

  8. Trahey, M. et al. Biochemical and biological properties of the human N-ras p21 protein. Molec. cell. Biol. 7, 541–544 (1987).

    Article  CAS  Google Scholar 

  9. Gibbs, B.G., Sigal, I.S., Poe, M. & Scolnick, E.M. Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc. natn. Acad. Sci. U.S.A. 81, 5704–5708 (1984).

    Article  CAS  Google Scholar 

  10. Adari, H., Lowy, D.R., Willumsen, B.M., Der, C.J. & McCormick, F. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240, 518–521 (1988).

    Article  CAS  Google Scholar 

  11. Trahey, M. et al. Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242, 1697–1700 (1988).

    Article  CAS  Google Scholar 

  12. Marshall, M.S. et al. A C-terminal domain of GAP is sufficient to stimulate ras p21 GTPase activity. EMBO J. 8, 1105–1110 (1989).

    Article  CAS  Google Scholar 

  13. Ballestar, R. et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851–859 (1990).

    Article  Google Scholar 

  14. Tanaka, K. et al. S.cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60, 803–807 (1990).

    Article  CAS  Google Scholar 

  15. Toda, T. et al. (1985) In yeast, ras proteins are controlling elements of adenylate cyclase. Cell 40, 27–36 (1985).

    Article  CAS  Google Scholar 

  16. Ballester, R. et al. Genetic analysis of mammalian GAP expressed in yeast. Cell 59, 681–686 (1989).

    Article  CAS  Google Scholar 

  17. Li, Y. et al. Somatic mutations in the neurofibromatosis 1 gene in human tumours. Cell 69, 275–281 (1992).

    Article  CAS  Google Scholar 

  18. McCormick, F. The world according to GAP. Oncogene 5, 1281–1283 (1990).

    CAS  PubMed  Google Scholar 

  19. Martin, G.A. et al. GAP domains responsible for Ras p21-dependent inhibition of muscarinic atrial K+channel currents. Science 255, 192–194 (1992).

    Article  CAS  Google Scholar 

  20. Medema, R.H., de Laat, W.L., Martin, G.A., McCormick, F. & Bos, J.L. GTPase-activating protein SH2-SH3 domains induce gene expression in a ras-dependent fashion. Molec. cell. Biol. 12, 3425–3430 (1992).

    Article  CAS  Google Scholar 

  21. Duchesne, M. et al. Identification of the SH3 domain of GAP as an essential sequence for ras-GAP-mediated signalling. Science 259, 525–528 (1993).

    Article  CAS  Google Scholar 

  22. Ellis, C., Moran, M., McCormick, F. & Pawson, T. Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 343, 377–381 (1990).

    Article  CAS  Google Scholar 

  23. Anderson, D. et al. Binding of SH2 domains of PLC-γ1, GAP and src to activated growth factors. Science 250, 979–982 (1990).

    Article  CAS  Google Scholar 

  24. Brott, B.K., Decker, S., Shafer, J., Gibbs, J.B. & Jove, R. GTPase activating protein interacting with viral and cellular src kinases. Proc. natn. Acad. Sci. U.S.A. 88, 755–759 (1991).

    Article  CAS  Google Scholar 

  25. Klein, G. The approaching era of tumour suppressor genes. Science 238, 1539–1545 (1987).

    Article  CAS  Google Scholar 

  26. Barbetti, F. et al. Detection of mutations in the insulin receptor gene by denaturing gradient gel electrophoresis. Diabetes 41, 408–415 (1992).

    Article  CAS  Google Scholar 

  27. Myers, R.M., Fischer, S.G., Lerman, L.S. & Maniatis, T. Nearly all single base substitutions in DNA fragments joined by a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucl. Acids Res. 13, 3131–3145 (1985).

    Article  CAS  Google Scholar 

  28. Miller, S.J. Biology of basal cell carcinoma. J. Amer. Acad. Dermatol. 24, 1–13 (1991).

    Article  CAS  Google Scholar 

  29. Erlich, H.A., Gelfand, D. & Sninsky, J.J. Recent advances in the polymerase chain reaction. Science 252, 1643–1651 (1991).

    Article  CAS  Google Scholar 

  30. Mertens, F. et al. Cytogenetic analysis of 33 basal cell carcinomas. Cancer Res. 51, 954–957 (1991).

    CAS  PubMed  Google Scholar 

  31. Pierceall, W.E., Goldberg, L.H., Tainsky, M.A., Mukhopadhyay, T. & Ananthaswamy, H.N. Ras gene mutation and amplification in human nonmelanoma skin cancers. Molec. Carcinog. 4, 196–202 (1991).

    Article  CAS  Google Scholar 

  32. Ananthaswamy, H.N., Applegate, L.A., Goldberg, L.H. & Bales, E.S. Detection of c-Ha-ras-1 allele in human skin cancers. Molec. Carcinog. 2, 298–301 (1989).

    Article  CAS  Google Scholar 

  33. Nazami, M.N., Dykes, P.J. & Marks, P. Epidermal growth factor receptors in human epidermal tumours. Br. J. Dermatol. 123, 153–161 (1990).

    Article  Google Scholar 

  34. Waxman, G., Shoelson, S.E., Pant, N., Cowburn, D. & Kuriyan, J. Binding of a high affinity phosphotyrosyl peptide to the src SH2 domain: crystal structures of the complexed and peptide free form. Cell 72, 779–790 (1993).

    Article  Google Scholar 

  35. Booker, G.W. et al. Structure of an SH2 domain of the p85a subunit of phosphatdylinositol-3-OH Kinase. Nature 358, 684–687 (1992).

    Article  CAS  Google Scholar 

  36. Koch, C.A., Anderson, D., Moran, M.F., Ellis, C. & Pawson, T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signalling proteins. Science 252, 668–674 (1991).

    Article  CAS  Google Scholar 

  37. Waksman, G. et al. Crystal structure of the phosphtyrosine recognition domain SH2 of v-src complexed with tyrosine phosphorylated peptides. Nature 358, 646–653 (1992).

    Article  CAS  Google Scholar 

  38. Backer, J.M. et al. Phophatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 11, 3469–3479 (1992).

    Article  CAS  Google Scholar 

  39. Mayer, B.J. & Baltimore, D. Signalling through SH2 and SH3 domains. Trends cell. Biol. 3, 8–13 (1993).

    Article  CAS  Google Scholar 

  40. Fantl, W.J. et al. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signalling pathways. Cell 69, 413–423 (1992).

    Article  CAS  Google Scholar 

  41. Buday, L. & Downward, J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, GRB2 adaptor protein and SOS nucleotide exchange factor. Cell 73, 611–620 (1993).

    Article  CAS  Google Scholar 

  42. Lowenstein, E.J. et al. The SH2 and SH3 domain containing protein GRB2 links receptor tyrosine kinases to ras signalling. Cell 70, 431–442 (1992).

    Article  CAS  Google Scholar 

  43. Koch, C.A., Moran, M., Sadowski, I. & Pawson, T. The common src homology region 2 domain of cytoplasmic signalling proteins is a positive effector of V-fps tyrosine kinase function. Molec. cell. Biol. 9, 4131–4140 (1989).

    Article  CAS  Google Scholar 

  44. Hirai, H. & Varmus, H.E. Site directed mutagenesis of the SH2 and SH3 domains of c-src produces varied phenotypes, including oncogenic activation of pp60c-src. Molec. cell. Biol. 10, 1307–1318 (1990).

    Article  CAS  Google Scholar 

  45. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  Google Scholar 

  46. Gross-Bellard, J., Oudet, P. & Chambon, P. Isolation of high molecular weight DNA from mammalian cells. Eur. J. Biochem. 36, 32–38 (1973).

    Article  CAS  Google Scholar 

  47. Jeanpierre, M. A rapid method for the purification of DNA from blood. Nucl. Acids Res. 15, 9611 (1987).

    Article  CAS  Google Scholar 

  48. Greer, C.E., Peterson, S.L., Kiviat, N.B. & Manos, M.M. PCR amplification from paraffin embedded tissues. Am. J. clin. Path. 95, 117–124 (1991).

    Article  CAS  Google Scholar 

  49. Lerman, L.S., Fischer, S.G., Hurley, I., Silverstein, K. & Lumelsky, N. Sequence determined DNA separations. Annu. Rev. Biophys. Bioeng. 13, 399–423 (1984).

    Article  CAS  Google Scholar 

  50. Myers, R.M., Maniatis, T. & Lerman, L.S. Detection and localisation of single base changes by denaturing gradient gel electrophoresis. Meth. Enzymol. 155, 501–527 (1987).

    Article  CAS  Google Scholar 

  51. Sheffield, V.C., Cox, D.R., Lerman, L.S. & Myers, R.M. Attachment of a 40-base pair G+C clamp to genomic DNA fragments by polymerase chain reaction results in improved detection of single base changes. Proc. natn. Acad. Sci. U.S.A. 86, 232–236 (1989).

    Article  CAS  Google Scholar 

  52. Syvänen, A.C., Aalto-Setälä, K., Kontula, K. & Söderlund, H. Direct sequencing of affinity captured amplified human DNA: application to the detection of apolipoprotein E polymorphism. FEBS Lett. 258, 71–74 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, E., Gejman, P., Martin, G. et al. Nonsense mutations in the C–terminal SH2 region of the GTPase activating protein (GAP) gene in human tumours. Nat Genet 5, 242–247 (1993). https://doi.org/10.1038/ng1193-242

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1193-242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing