Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Targetting of the gene encoding fibrillin–1 recapitulates the vascular aspect of Marfan syndrome

Abstract

Aortic aneurysm and dissection account for about 2% of all deaths in industrialized countries; they are also components of several genetic diseases, including Marfan syndrome (MFS)1. The vascular phenotype of MFS results from mutations in fibrillin-1 (FBN1), the major constituent of extracellular microfibrils2,3. Microfibrils, either associated with or devoid of elastin, give rise to a variety of extracellular networks in elastic and non-elastic tissues3. It is believed that microfibrils regulate elastic fibre formation by guiding tropo-elastin deposition during embryogenesis and early post-natal life4. Hence, vascular disease in MFS is thought to result when FBN1 mutations preclude elastic fibre maturation by disrupting microfibrillar assembly. Here we report a gene-targetting experiment in mice that indicates that fibrillin-1 microfibrils are predominantly engaged in tissue homeostasis rather than elastic matrix assembly. This finding, in turn, suggests that aortic dilation is due primarily to the failure by the microfibrillar array of the adventitia to sustain physiological haemodynamic stress, and that disruption of the elastic network of the media is a secondary event.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dietz, H., Ramirez, F. & Sakai, L. Marfan syndrome and other microfibrillar diseases. in Advances in Human Genetics, vol. 22 (eds Harris, H. & Hirschhorn, K.) 153–186 (Plenum, New York, (1994).

    Chapter  Google Scholar 

  2. Dietz, H. & Pyeritz, R. Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum. Mol. Genet. 4, 1799–1809 (1995).

    Article  CAS  Google Scholar 

  3. Sakai, L., Keene, D.R. & Engvall, E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J. Cell Biol. 103, 2499–2509 (1986).

    Article  CAS  Google Scholar 

  4. Mecham, R.P. & Davis, E. Elastic fiber structure and assembly, in Extracellular Matrix Assembly and Structure (eds Yurchenco, P. O., Birk, D.E. & Mecham, R.P.) 281–314 (Academic Press, New York, (1994).

    Chapter  Google Scholar 

  5. Pereira, L. et al. Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum. Mol. Genet. 2, 961–968 (1993).

    Article  CAS  Google Scholar 

  6. Kainulainen, K., Karttunen, L., Puhakka, L., Sakai, L. & Peltonen, L. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nature Genet. 6, 64–69 (1994).

    Article  CAS  Google Scholar 

  7. Ramirez, F. Fibrillin mutations in Marfan syndrome and related phenotypes. Curr. Opin. Genet. Dev. 6, 309–315 (1996).

    Article  CAS  Google Scholar 

  8. Hogan, B., Beddington, R., Constantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual, 2nd ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1994).

    Google Scholar 

  9. Zhang, H. et al. Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J. Cell Biol. 124, 855–863 (1994).

    Article  CAS  Google Scholar 

  10. Fiering, S. et al. Targeted deletion of 5′ HS2 of the murine b-globin LCR reveals that it is not essential for proper regulation of the b-globin locus. Genes Dev. 9, 2203–2213 (1995).

    Article  CAS  Google Scholar 

  11. Pham, C.T.N., Maclvor, D.M., Hug, B.A., Heusel, J.W. & Ley, T.J. Long-range disruption of gene expression by a selectable marker cassette. Proc. Natl. Acad. Sci. USA 93, 13090–13095 (1996).

    Article  CAS  Google Scholar 

  12. Zhang, H., Hu, W. & Ramirez, F. Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J. Cell Biol. 123, 1165–1176 (1995).

    Article  Google Scholar 

  13. Davis, E.C. Smooth muscle cell to elastic lamina connections in developing mouse aorta: role in aortic medial organization. Lab. Invest. 68, 89–97 (1993).

    CAS  PubMed  Google Scholar 

  14. Hollister, D.W., Godfrey, M., Sakai, L.Y. & Pyeritz, R.E. Marfan syndrome: immunohistologic abnormalities of the microfibrillar fiber system. N. Engl. J. Med. 323, 935–939 (1990).

    Article  Google Scholar 

  15. Tilson, D.M., Elefteriades, J. & Brophy, C.M. Tensile strength and collagen in abdominal aortic aneurysm disease, in The Cause and Management of Aneurysms (eds Greenhalgh, M. & Mannick, J.A.) 97–104 (Latimer Trend, Plymouth UK, (1990).

    Google Scholar 

  16. Davis, E.C. Immunolocalization of microfibril and microfibril-associated proteins in the subendothelial matrix of the developing mouse aorta. J. Cell Sci. 107, 727–736 (1994).

    CAS  Google Scholar 

  17. Putnam, E.A., Zhang, H., Ramirez, F. & Milewicz, D.M. Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nature Genet. 11, 456–458 (1995).

    Article  CAS  Google Scholar 

  18. Ewart, A.K., Jin, W., Atkinson, D.L., Morris, C.A. & Keating, M.T. Supravalvular aortic stenosis associated with a deletion disrupting the elastin gene. J. Clin. Invest. 93, 1071–1077 (1994).

    Article  CAS  Google Scholar 

  19. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 63, 915–926 (1992).

    Article  Google Scholar 

  20. Andrikopoulos, K., Liu, X., Keene, R.D., Jaenisch, R. & Ramirez, F. Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly. Nature Genet. 9, 31–36 (1995).

    Article  CAS  Google Scholar 

  21. Sambrook, E., Fritsch, E.F. & Maniatis, T., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  22. Gause, W.C. & Adamovicz, J. Use of PCR to quantitate relative differences in gene expression, in PCR Primer: A Laboratory Manual (eds Dieffenbach, C. W. & Dveksler, G.S.) 293–338 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, (1989).

    Google Scholar 

  23. Reinhardt, D.P. et al. Fibrillin 1: organization in microfibrils and structural properties. J. Mol. Biol. 258, 104–115 (1996).

    Article  CAS  Google Scholar 

  24. Keene, D.R. et al. Fibrillin-1 in human cartilage: developmental expression and formation of special banded fibrils. J. Histochem. Cytochem. (in the press).

  25. Hurle, J.M. et al. Elastin exhibits a distinctive temporal and spatial pattern of distribution in the developing chick limb in association with the establishment of the cartilaginous skeleton J. Cell Sci. 107, 2623–2634 (1994).

    CAS  PubMed  Google Scholar 

  26. Sakai, L.Y., Keene, D.R., Glanville, R.A. & Bächinger, H.P. Purification and partial characterization of fibrillin, a cystine-rich structural component of connective tissue microfibrils. J. Biol. Chem. 266, 14763–14770 (1991).

    CAS  PubMed  Google Scholar 

  27. Sakai, L.Y. & Keene, D.R. Fibrillin: monomers and microfibrils. Methods Enzymol. 245, 29–52 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ramirez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, L., Andrikopoulos, K., Tian, J. et al. Targetting of the gene encoding fibrillin–1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 17, 218–222 (1997). https://doi.org/10.1038/ng1097-218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1097-218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing