Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1)

Abstract

Hereditary multiple exostoses is an autosomal dominant disorder that is characterized by short stature and multiple, benign bone tumours. In a majority of families, the genetic defect (EXT1) is linked to the Langer–Giedion syndrome chromosomal region in 8q24.1. From this region we have cloned and characterized a cDNA which spans chromosomal breakpoints previously identified in two multiple exostoses patients. Furthermore, the gene harbours frameshift mutations in affected members of two EXT1 families. The cDNA has a coding region of 2,238 bp with no apparent homology to other known gene sequences and thus its function remains elusive. However, recent studies in sporadic and exostosis–derived chondrosarcomas suggest that the 8q24.1–encoded EXT1 gene may have tumour suppressor function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Solomon, L. Hereditary multiple exostosis. J. Bone Joint Surg. 45, B, 292–304 (1963).

    Article  Google Scholar 

  2. Solomon, L. Hereditary multiple exostosis. Am. J. hum. Genet. 16, 351–363 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hennekam, R.C.M. Hereditary multiple exostoses. J. med. Genet. 28, 262–266 (1991).

    Article  CAS  Google Scholar 

  4. Sugiura, Y., Sugiura, I. & Iwata, H. Hereditary multiple exostoses: diaphyseal aclasis. Jpn. J. hum. Genet. 21, 149–167 (1976).

    CAS  Google Scholar 

  5. Voutsinas, S. & Wynne-Davies, R. The infrequency of malignant disease in diaphyseal aclasis and neurofibromatosis. J. med. Genet. 20, 345–349 (1983).

    Article  CAS  Google Scholar 

  6. Leone, N.C. et al. Hereditary multiple exostosis. A comparative human-equine-epidemiologic study. J. Hered. 78, 171–177 (1987).

    Article  CAS  Google Scholar 

  7. Bühler, E.M. & Malik, N.J. The Tricho-Rhino-Phalangeal Syndrome(s):Chromosome 8 long arm deletion: Is there a shortest region of overlap between reported cases? TRP I and TRP II syndromes: Are they separate entities? Am. J. med. Genet. 19, 113–119 (1984).

    Article  Google Scholar 

  8. Lüdecke, H.-J. et al. Molecular definition of the shortest region of deletion overlap in the Langer-Giedion syndrome. Am. J. hum. Genet. 49, 1197–1206 (1991).

    PubMed  PubMed Central  Google Scholar 

  9. Parrish, J.E., Wagner, M.J., Hecht, J.T., Scott Jr, C.I. & Wells, D.E. Molecular analysis of overlapping chromosomal deletions in patients with Langer-Giedion syndrome. Genomics 11, 54–61 (1991).

    Article  CAS  Google Scholar 

  10. Cook, A. et al. Genetic heterogeneity in families with hereditary multiple exostoses. Am. J. hum. Genet. 53, 71–79 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, Y.-Q. et al. Assignment of a second locus for multiple exostoses to the pericentromeric region of chromosome 11. Hum. molec. Genet. 3, 167–171 (1994).

    Article  CAS  Google Scholar 

  12. Le Merrer, M. et al. A gene for hereditary multiple exostoses maps to chromosome 19p. Hum. molec. Genet. 3, 717–712 (1994).

    Article  CAS  Google Scholar 

  13. Hecht, J.T., Hogue, D., Strong, L.C., Hansen, M., Blanton, S.H. & Wagner, M. Hereditary multiple exostosis and chondrosarcoma: Linkage to chromosome 11 and loss of heterozygosity for EXT-linked markers on chromosomes 11 and loss 8. AM. J. hum. Genet. 56, 1125–1131 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Raskind, W.H., Conrad, E.U., Chansky, H. & Matsushita, M. Loss of heterozygosity in chondrosarcomas for hereditary multiple exostoses-linked markers on chromosomes 8 and 11. Am. J. hum. Genet. 56, 1132–1139 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Frydman, M. et al. Inv(8)(p23q24), multiple exostoses and short stature, without features of the Langer-Giedion syndrome. Am. J. hum. Genet. 51, Suppl., A79 (1992).

    Google Scholar 

  16. Lüdecke, H.-J. et al. Molecular dissection of a contiguous gene syndrome: localization of the genes involved in the Langer-Giedion syndrome. Hum. molec. Genet. 4, 31–36 (1995).

    Article  Google Scholar 

  17. Ogle, R.F., Dalzell, P., Turner, G., Wass, D. & Yip, M.-Y. Multiple exostoses in a patient with t(8;11)(q24. 11;p15.5). J. med. Genet. 28, 881–883 (1991).

    Article  CAS  Google Scholar 

  18. Yoshiura, K., Inazawa, J., Koyama, K., Nakamura, Y. & Niikawa, N. Mappingof the 8q23 translation breakpoint of t(8; 13) observed in a patient with multiple exostoses. Genes. Cnrom. Cancer 9, 57–61 (1994).

    Article  CAS  Google Scholar 

  19. Guo, W. et al. Genomic scanning for expressed sequences in Xp21 identifies the glycerol kinase gene. Nature Genet. 4, 367–372 (1993).

    Article  CAS  Google Scholar 

  20. Frohman, M.A., Dush, M.K. & Martin, G.R. Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc. natn. Acad. Sci. U.S.A. 85, 8998–9002 (1988).

    Article  CAS  Google Scholar 

  21. Hou, J. et al. A 4 megabase YAC contig that spans the Langer-Giedion syndrome region on human chromosome 8q24.1: Use in refining the location of the trichorhinophalangeal syndrome and multiple exostoses genes. Genomics (In the press).

  22. Parrish, J.E., Wang, Y., Wagner, M.J. & Wells, D.E. Alignment of physical and genetic maps of human 8q23-qter using somatic cell hybrid mapping panel. Som. Cell molec. Genet. 20, 143–146 (1994).

    Article  CAS  Google Scholar 

  23. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  24. Lohmann, D.R., Brandt, B., Höpping, W., Passarge, E. & Horsthemke, B. Spectrum of small length germline mutations in the RB1 gene. Hum. molec. Genet. 3, 2187–2193 (1994).

    Article  CAS  Google Scholar 

  25. Le Merrer, M. et al. The gene for hereditary multiple exostoses does not map to the Langer-Giedion region (8q23–q24). J. med. Genet. 29, 713–715 (1992).

    Article  CAS  Google Scholar 

  26. Mertens, F. et al. Loss of chromosome band 8q24 in sporadic osteocartilaginous exostoses. Genes Cnrom. Cancer 9, 8–12 (1994).

    Article  CAS  Google Scholar 

  27. Wood, S. et al. Characterization of a human chromosome 8 cosmid library constructed from flow-sorted chromosomes. Cytogenet cell Genet. 59, 243–247 (1992).

    Article  CAS  Google Scholar 

  28. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

  29. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning-A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, J., Lüdecke, HJ., Lindow, S. et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet 11, 137–143 (1995). https://doi.org/10.1038/ng1095-137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1095-137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing