Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue

Abstract

Friedreich's ataxia (FRDA) is an autosomal recessive degenerative disorder that primarily affects the nervous system and heart. Patients with FRDA have point mutations or trinucleotide repeat expansions in both alleies of FRDA, which encodes a protein termed frataxin. We show that the yeast frataxin homologue, which we have named YFH1, localizes to mitochondria and is required to maintain mitochondrial DMA. The YFH1-homologous domain of frataxin functions in yeast and a disease-associated missense mutation of this domain, or the corresponding domain in YFH1, reduces function. Our data suggest that mitochondrial dysfunction contributes to FRDA pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dürr, A. et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med. 335, 1169–1175 (1996).

    Article  PubMed  Google Scholar 

  2. Barbeau, A. Friedreich's ataxia, 1980: an overview of the pathophysiology. Can. J. Neurol. Sci. 7, 455–468 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Barbeau, A., Quebec cooperative study of Friedreich's ataxia: 1974–1984—10 years of research. Can. J. Neurol. Sci. 11, 646–660 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Duclos, F., Rodius, F., Wrogemann, K., Mandel, J.-L. & Koenig, M. Friedreich ataxia region: characterization of two novel genes and reduction of the critical region to 300 kb. Hum. Mol. Genet. 3, 909–914 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Montermini, L. et al. The Friedreich ataxia critical region spans a 150-kb interval on chromosome 9q13. Am. J. Hum. Genet. 57, 1061–1067 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronicGAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Nakai, K. & Kanehisa, M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897–911 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Tzagaloff, A. & Diekmann, C.L. PET genes of Saccharomyces cerevisiae. Microbiol. Rev. 54, 211–225 (1990).

    Google Scholar 

  9. Johns, D.R. Mitochondrial DNA and disease. N. Engl. J. Med. 333, 638–644 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Mastrogiacomo, F. et al. Immunoreactive levels of a-ketoglutarate dehydrogenase subunits in Friedreich's ataxia and spinocerebellar ataxia type 1. Neurodegeneration 5, 27–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. LaMarche, J.B., Cote, M. & Lemieux, B. The cardiomyopathy of Friedreich's ataxia: morphological observations in 3 cases. Can. J. Neurol. Sci. 7, 389–396 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Koobs, D.H., Schultz, R.L. & Jutzy, R. The origin of lipofuscin and possible consequences to the myocardium. Arch. Pathol. Lab. Med. 102, 66–68 (1978).

    CAS  PubMed  Google Scholar 

  13. Tappel, A.L. Vitamin E and free-radical peroxidation of lipids. Ann. N.Y. Acad. Sci. 203, 12–28 (1972).

    Article  CAS  PubMed  Google Scholar 

  14. Ouahchi, K. et al. Ataxia with isolated vitamin E defeciency is caused by mutations in the cc-tocopherol transfer protein. Nature Genet. 9, 141–145 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Luft, R. The development of mitochondria! medicine. Biochim. Biophys. Acta 1271, 1–6 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Suomalainen, A. et al. An autosomal locus predisposing to deletions of mitochondrial DNA. Nature Genet. 9, 146–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Zeviani, M. Nucleus-driven mutations of human mitochondrial DNA. J. Inherited Metab. Dis. 15, 456–471 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Myers, A.M., Rape, L.K. & Tzagoloff, A. Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J. 4, 2087–2092 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Genga, A., Bianchi, L. & Foury, F. A nuclear mutant of Saccharomyces cerevisiae deficient in mitochondrial DNA replication and polymerase activity.J. Biol. Chem. 261, 9328–9332 (1986).

    CAS  PubMed  Google Scholar 

  20. Mueller, D.M. et al. Temperature sensitive pet mutants in yeast Saccharomyces cerevisiae that lose mitochondrial RNA. Curr. Genet. 11, 359–367 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Sanyal, A. et al. Heat shock protein HSP60 can alleviate the phenotype of mitochondrial RNA-deficient temperature-sensitive mna2 pet mutants. Mol. Gen. Genet. 246, 56–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Carvajal, J.J. et al. The Friedreich's ataxia gene encodes a novel phosphatidylinositol-4-phosphate 5-kinase. Nature Genet. 14, 157–162 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Carvajal, J.J. et al. Friedreich's ataxia: a defect in signal transduction? Hum. Mol. Genet. 4, 1411–1419 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Matsumoto, M. et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379, 168–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Babcock, M. et al. Regulation of mitochondrial iron accumulation by Yfhlp, a putative homolog of Frataxin. Science 276, 1709–1712 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Simon, M. & Faye, G. Steps in processing of the mitochondrial cytochrome oxidase subunit I pre-mRNA affected by a nuclear mutation in yeast. Proc. Natl. Acad. Sd. USA 81, 8–12 (1984).

    Article  CAS  Google Scholar 

  27. Protocols in Molecular Biology (eds Ansubel, F.M. et al.) (John Wiley & Sons, New York, 1995).

  28. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Roth, M.B., Zahler, A.M. & Stolk, J.A. A conserved family of nuclear phosphoproteins localized to sites of polymerase II transcription. Cell Biol. 115, 587–596 (1991).

    Article  CAS  Google Scholar 

  31. Rose, M.D., Winston, F. & Hieter, P. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y., 1990).

    Google Scholar 

  32. Garn, H., Krause, H., Enzmann, V. & Drossier, K. An improved MTT assay using the electron-coupling agent menadione. J. Immunol. Methods 168, 253–256 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Jahn, B., Martin, E., Stueben, A. & Bhakdi, S. Susceptibility testing of Candida albicans and Aspergillus species by a simple microtiter menadione-augmented 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. J. Clin. Microbiol. 33, 661–667 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, R., Roof, D. Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat Genet 16, 352–357 (1997). https://doi.org/10.1038/ng0897-352

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0897-352

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing