Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromosomal mapping of quantitative trait loci contributing to stroke in a rat model of complex human disease

Abstract

Stroke is a complex disorder with a poorly understood multifactorial and polygenic aetiology. We used the stroke–prone spontaneously hypertensive rat (SHRSP) as a model organism, mated it with the stroke–resistant spontaneously hypertensive rat (SHR) and performed a genome–wide screen in the resultant F2 cohort where latency until stroke, but not hypertension (a major confounder) segregated. We identified three major quantitative trait loci, STR1–3, with lod scores of 7.4,4.7 and 3.0, respectively, that account for 28% of the overall phenotypic variance. STR2 colocalizes with the genes encoding atrial and brain natriuretic factor, peptides with important vasoactive properties. Our results demonstrate the existence of primary, blood pressure–independent genetic factors predisposing to a complex form of stroke

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kannel, W.B., Wolf, P.A., Verter, J. & McNamara, M.J. Epidemiological assessment of the role of blood pressure on stroke: the Framingham study. JAMA 214, 301–310 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. Veterans Administration Cooperative Study group on Antihypertensive Agents, Effects of treatment on morbidity in hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 mm Hg. JAMA 213, 1143–1152 (1970).

  3. Ostfeld, A.M., Shekelle, R.B., Klawans, H. & Tufo, H.M. Epidemiology of stroke in an elderly welfare population. Am. J. Public Health 64, 450–458 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iso, H., Jacobs, D.R. Jr., Wentworth, D., Neaton, J.D. & Cohen, J.D. Serum cholesterol levels and six-year mortality from stroke in 350,977 men screened for the multiple risk factor intervention trial [see comments]. N. Engl. J. Med. 320, 904–910 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Kagan, A., Popper, J.S. & Rhoads, G.G. Factors related to stroke incidence in Hawaii Japanese men. The Honolulu Heart Study. Stroke 11, 14–21 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Gifford, A.J. An epidemiological study of cerebrovascular disease. Am. J. Public Health 56, 452–461 (1966).

    Article  CAS  Google Scholar 

  7. Welin, L., Svardsudd, K., Wilhelmsen, L., Larsson, B. & Tibblin, G. Analysis of risk factors for stroke in a cohort of men born in 1913. N. Engl. J. Med. 317, 521–526 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Diaz, J.F., Hachinski, V.C., Pederson, L.L. & Donald, A. Aggregation of multiple risk factors for stroke in siblings of patients with brain infarction and transient ischemic attacks. Stroke 17, 1239–1242 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Marshall, J. Familial incidence of cerebrovascular disease. J. Med. Genet. 8, 84–89 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Faire, U., Friberg, L. & Lundman, T. Concordance for mortality with special reference to ischemic heart disease and cerebrovascular disease: A study on the Swedish Twin Registry. Prev. Med. 4, 509–517 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Brass, L.M., Isaacson, J.L., Merikangas, K.R. & Robinette, C.D. A study of twins and stroke. Stroke 23, 221–223 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Palsdottir, A. et al. Mutation in cystatin C gene causes hereditary brain haemorrhage. Lancet 2, 603–604 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Boers, G.H. et al. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N. Engl. J. Med. 313, 709–715 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Levy, E. et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Tournier-Lasserve, E. et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukencephalopathy maps to chromosome 19q12. Nature Genet. 3, 256–259 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Kannel, W.B. and Sorlie, P. Hypertension in Framingham. In Epidemiology and control of hypertension, (ed. Paul, 0.) 553–592 (Stratton, New York, 1975).

    Google Scholar 

  17. Okamoto, K., Yamori, Y. & Nagaoka, A. Establishment of the stroke-prone spontaneously hypertensive rat (SHR). Circ. Res. 33/34, I-143–I-153 (1974).

    Google Scholar 

  18. Slivka, A. Effect of antihypertensive therapy on focal stroke in spontaneously hypertensive rats. Stroke 22, 884–888 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Yamori, Y., Horie, R., Tanase, H., Fujiwara, K., Nara, Y. & Lovenberg, W. Possible role of nutritional factors in the incidence of cerebral lesions in stroke-prone spontaneously hypertensive rats. Hypertension 6, 49–53 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Nagaoka, A., Iwatsuka, H., Suzuoki, Z. & Okamoto, K. Genetic predisposition to stroke in spontaneously hypertensive rats. Am. J. Physiol. 230, 1354–1359 (1976).

    CAS  PubMed  Google Scholar 

  21. Volpe, M. et al. Relation of plasma renin to end organ damage and to protection of K+ feeding in stroke-prone hypertensive rats. Hypertension 15, 318–326 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Yamori, Y., Horie, R., Akiguchi, I., Kihara, M., Nara, Y. & Lovenberg, W. Symptomatological classification in the development of stroke in stroke-prone spontaneously hypertensive rats. Jap. Circ. J. 46, 274–283 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Sadoshima, S., Busija, D.W. & Heistad, D.D. Mechanisms of protection against stroke in stroke-prone spontaneously hypertensive rats. Am. J. Physiol. 244, H406–H412 (1983).

    CAS  PubMed  Google Scholar 

  24. Tagami, M. et al. Permeability of intracranial extracerebral vessels in stroke-prone SHR. Stroke 12, 852–857 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Tagami, M. et al. Ultrastructural characteristics of occluded perforating arteries in stroke-prone spontaneously hypertensive rats. Stroke 18, 733–740 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Kreutz, R. et al. Dissection of a quantitative trait locus for genetic hypertension on rat chromosome 10. Proc. Natl. Acad. Sci. USA 92, 8778–8782 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hilbert, P. et al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353, 521–529 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Jacob, H.E. et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67, 213–224 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Hubner, N., Kreutz, R., Takahashi, S., Ganten, D. & Lindpaintner, K. Unlike human hypertension, blood pressure in a heredetary hypertensive rat strain shows no linkage to the angiotensinogen locus. Hypertension 23, 797–801 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Lander, E.S. & Kruglyak, L. Genetic dissection of complex traits: Guidelines for interpreting linkage results. Nature Genet. 11, 241–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Witte, J.S., Elston, R.C. Curtis, D. Genetic dissection of complex traits (correspondence). Nature Genet. 12, 355–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Lathrop, G.M. & Lalouel, J.M. Easy calculations of lod scores and genetic risks on small computers. Am. J. Hum. Genet. 36, 460–465 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jacob, H. et al. A genetic linkage map of the laboratory rat, Rattus norvegicus. Nature Genet. 9, 63–69 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Needleman, P. et al. The biochemical pharmacology of atrial peptides. Annu. Rev. Pharmacol. Toxicol. 29, 23–54 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Yamori, Y. et al. Pathogenetic similarity of strokes in stroke-prone, spontaneously hypertensive rats and humans. Stroke 7, 46–53 (1976).

    Article  CAS  PubMed  Google Scholar 

  36. Yamori, Y. et al. Dietary risk factors of stroke and hypertension in Japan —Part 1: Methodological assessment of urinalysis for dietary salt and protein intakes. Jap. Circ. J. 46, 933–938 (1982).

    Article  CAS  PubMed  Google Scholar 

  37. Volpe, M. et al. Association and cosegregatio nof stroke with impaired endothelium-dependent vasorelaxation in stroke-prone, spontaneously hypertensive rats. J. Clin. Invest. (in the press).

  38. Ducros, A. et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, genetic homogeneity, and mapping of the locus within a 2-cM interval. Am. J. Hum. Genet. 58, 171–181 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lander, E.S. & Green, P. Construction of multilocus genetic maps in humans. Proc. Natl. Acad. Sci. USA 84, 2363–2367 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lindpaintner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubattu, S., Volpe, M., Kreutz, R. et al. Chromosomal mapping of quantitative trait loci contributing to stroke in a rat model of complex human disease. Nat Genet 13, 429–434 (1996). https://doi.org/10.1038/ng0896-429

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0896-429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing