Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic lesions at the H19 locus in Wilms' tumour patients

Abstract

To test the potential role of H19 as a tumour suppressor gene we have examined its expression and DNA methylation in Wilms' tumours (WTs). In most WTs (18/25), H19 RNA was reduced at least 20–fold from fetal kidney levels. Of the expression–negative tumours ten retained 11p15.5 heterozygosity: in nine of these, H19 DNA was biallelically hypermethylated and in two cases hypermethylation locally restricted to H19 sequences was also present in the non–neoplastic kidney parenchyma. IGF2 mRNA was expressed in most but not all WTs and expression patterns were consistent with IGF2/H19 enhancer competition without obligate inverse coupling. These observations implicate genetic and epigenetic inactivation of H19 in Wilms' tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pachnis, V., Brannan, C.I. & Tilghman, S.M. The structure and expression of a novel gene activated In early mouse embryogenesis. EMBO J. 7, 673–681 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wiles, M.V. Isolation of differentially expressed human cDNA clones: similarities between mouse and human embryonal stem cell differentiation. Development 104, 403–413 (1988).

    CAS  PubMed  Google Scholar 

  3. Poirier, F. et al. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development 113, 1105–1114 (1992).

    Google Scholar 

  4. Rachmllewitz, J. et al. Transcription of the H19 gene in differentiating cytotrophoblasts from human placenta. Molec. Rep. Dev. 321, 196–202 (1992).

    Article  Google Scholar 

  5. Han, D.K. & Liau, G. Identification and characterization of developmentally regulated genes in vascular smooth muscle cells. Circ. Res. 71, 711–719 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Hao, Y., Crenshaw, T., Moulton, T., Newcomb, E. & Tycko, B. Tumour-suppressor activity of H19 RNA. Nature 365, 764–767 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Goshen, R. et al. The expression of the H19 and IGF2 genes during human embryogenesis and placental development. Molec. Rep. Dev. 34, 374–379 (1993).

    Article  CAS  Google Scholar 

  8. Lustig, O. et al. The expression of the imprinted H19 gene in the human fetus. Mol Rep. Dev. (in the press).

  9. Brannan, C.I., Dees, E.C., Ingram, R.S. & Tilghman, S.M. The product of the H19 gene may function as an RNA. Molec. cell. Biol. 10, 28–36 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brockdorff, N. et al. The product of the mouse Xist gene is a 15 Kb inactive-X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet. 1, 40–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Rachmilewitz, J. et al. Parental imprinting of the human H19 gene. FEBS Lett. 309, 25–28 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Rainier, S. et al. Relaxation of Imprinted genes in human cancer. Nature 362, 747–749 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Y. et al. Imprinting of human H19: allele-specific CpG methylation, loss of the active allele In Wilms' tumor and potential for somatic allele switching. Am. J. hum. Genet. 53, 113–124 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartolomei, M.S., Webber, A.L., Brunkow, M.E. & Tilghman, S.M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Devel. 7, 1663–1673 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson-Smith, A.C., Sasaki, H., Cattanach, B.M. & Surani, M.A. Parentalorigin-specific epigenetlc modification of the mouse H19 gene. Nature 362, 751–755 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Tycko, B. Imprinting: mechanism and role in human pathology. Am. J. Pathol. 144, 431–443 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brunkow, M.E. & Tilghman, S.M. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 5, 1092–1101 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting Implicated in Wilms' tumour. Nature 362, 749–751 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Reeve, A.E., Eccles, M.R., Wilkins, R.J., Bell, G.I. & Millow, L.J. Expression of insulin-like growth factor-II transcripts in Wilms' tumour. Nature 317, 258–260 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Scott, J. et al. Insulin-like growth factor-II gene expression in Wilms' tumour and embryonic tissues. Nature 317, 260–262 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Han, O.K. & Liau, G. Identification and characterization of developmentally regulated genes in vascular smooth muscle cells. Circ. Res. 71, 711–719 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Henry, I. et al. Molecular definition of the 11p15.5 region involved in Beckwith-Weidermann syndrome and In predispostion to adrenocortical carcinoma. Hum. Genet. 81, 273–277 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Littte, M.H., Clarke, J., Byrne, J., Dunn, R. & Smith, P.J. Allelic loss on chromosome 11p is a less frequent event in bilateral than in unilateral Wilms' tumours. Eur. J. Cancer 28A, 1876–1880 (1992).

    Article  Google Scholar 

  26. Weksberg, R., Shen, D.R., Fei, Y.L., Song, Q.L. & Squire, J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nature Genet. 5, 143–150 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Chao, L.-Y. et al. Genetic mosaicism In normal tissues of Wilms' tumor patients. Nature Genet. 3, 127–131 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Yandell, D.W., Dryja, T.P. & Little, J.B. Somatic mutations at a heterozygous autosomal locus in human cancer cells occur more frequently by allele loss than by intragenic structural alterations. Som. Cell molec. Genet. 12, 255–263 (1986).

    Article  CAS  Google Scholar 

  29. Klinedinst, D.K. & Drinkwater, N.R. Reduction to homozygosity is the predominant spontaneous mutational event in cultured human lymphoblastoid cells. Mutat. Res. 250, 365–374 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Coppes, M.J. et al. Loss of heterozygosity mapping in Wilms tumor indicates the involvement of three distinct regions and a limited role for nondisjunction or mitotic recombination. Genes Chrom. Cancer 5, 326–334 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Tartof, K. & Henikoff, S. Trans-sensing effects from Drosophila to humans. Cell 65, 201–203 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Fidler, A.E., Maw, M.A., Eccles, M.R. & Reeve, A.E. Trans-sensing hypothesis for origin of Beckwith-Wiedemann syndrome. Lancet 339, 243 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Feinberg, A.P. & Vogelstein, B. Hypomethylation distinguishes genes of, some human cancers from their normal counterparts. Nature 301, 89–91 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Haselbacher, G.K., Irminger, J-C., Zapf, J., Ziegler, W.H. & Humbel, R.E. Insulin-like growth factor II in human adrenal pheochromocytomas and Wilms tumors: Expression at the mRNA and protein level. Proc. natn. Acad. Sci. U.S.A. 84, 1104–1106 (1987).

    Article  CAS  Google Scholar 

  35. Baccarini, P., Florentino, M., DErrico, A., Mancini, A.M. & Grigioni, W.F. Detection of anti-sense transcripts of the Insulin-like growth factor-2 gene in Wilms tumor. Am. J. Pathol. 143, 1535–1542 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rastinejad, F., Conboy, M.J., Rando, T.A. & Blau, H.M. Tumor suppression by RNA from the 3′ untranslated region of α-tropomyosin. Cell 75, 1107–1118 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Polymeropoulos, M.H., Xiao, H., Rath, D.S. & Merril, C.R. Tetranucleotide repeat polymorphism at the human tyroslne hydroxylase gene (TH). Nucl. Adds Res. 19, 3753 (1991).

    Google Scholar 

  38. Tadokoro, K., Fujii, H., Inoue, T. & Yamada, M. Polymerase chain reaction (PCR) for detection of Apal polymorphism at the insulin like growth factor II gene (IGF2). Nucl. Acids Res. 19, 6967 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Riggins, G.J., Lokey, L.K. & Warren, S.T. CGG repeat polymorphism at the c-Ha-ras oncogene locus. Hum. molec. Genet. 1, 775 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Feinberg, A.P. & Vogelstein, B. Hypomethylation of ras oncogenes in primary human cancers. Biochem. Biophys. Res. Comm. 111, 47–54 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. Dull, T.J., Gray, A., Hayflick, J.S. & Ullrich, A. Insulin-like growth factor II precursor gene organization in relation to insulin gene family. Nature 310, 777–781.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moulton, T., Crenshaw, T., Hao, Y. et al. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nat Genet 7, 440–447 (1994). https://doi.org/10.1038/ng0794-440

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0794-440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing