Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND

An Erratum to this article was published on 01 August 1997

Abstract

dHAND and eHAND are related basic helix-loop-helix (bHLH) transcription factors that are expressed in mesodermal and neural crest-derived structures of the developing heart. In contrast to their homogeneous expression during avian cardiogenesis, during mouse heart development we show that dHAND and eHAND are expressed in a complementary fashion and are restricted to segments of the heart tube fated to form the right and left ventricles, respectively. dHAND and eHAND represent the earliest cardiac chamber-specific transcription factors yet identified. Targeted gene deletion of dHAND in mouse embryos resulted in embryonic lethality at embryonic day 10.5 from heart failure. Our description of the cardiac phenotype of dHAND mutant embryos is the first demonstration of a single gene controlling the formation of the mesodermally derived right ventricle and the neural crest-derived aortic arches and reveals a novel cardiogenic subprogramme for right ventricular development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. DeHaan, R.L., Organogenesis (eds DeHaan, R. L, & Ursprung, H.) 377–419 (Holt Rinehart & Winston Inc., New York, 1964).

  2. Olson, E.N. & Srivastava, D. Molecular pathways controlling heart development. Science 272, 671–676 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Olson, E.N. & Klein, W.H. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8, 1–6 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Shivdasani, R.A., Mayer, E.L. & Orkin, S.H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Jan, L.Y. & Jan, Y.N. HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75, 827–830 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Srivastava, D., Cserjesi, P. & Olson, E.N. A subclass of bHLH proteins required for cardiogenesis. Science 270, 1995–1999 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Cserjesi, P., Brown, D., Lyons, G.E. & Olson, E.N. Expression of the novel basic helix-loop-helix gene eHAND in neural crest derivatives and extraembryonic membranes during mouse development. Dev. Biol. 170, 664–678 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Hollenberg, S.M., Sternglanz, R., Cheng, P.F. & Weintraub, H. Identification of a newfamily of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15, 3813–3822 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cross, J.C. et al. Hxt encodes a basic helix-loop-helix transcription factor that regulates trophoblast cell development. Development 121, 2513–2523 (1995).

    CAS  PubMed  Google Scholar 

  10. Yutzey, K.E. & Bader, D. Diversification of cardiomyogenic cell lineages during early heart development. Circ. Res. 77, 216–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Mikawa, T., Borisov, A., Brown, A.M.C. & Fischman, D.A. Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev. Dyn. 193, 11–23 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Stanier, D.Y.R. & Fishman, M.C. Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev. Biol. 153, 91–101 (1992).

    Article  Google Scholar 

  13. Ross, R.S., Navankasattusas, S., Harvey, R.P. & Chien, K.R. HF-1a/HF-1b/MEF2 combinatorial element confers cardiac ventricular specificity and establishes ananterior-posterior gradient of expression via an Nkx2x. 5 independent pathway. Development 122, 1799–1809 (1996).

    CAS  PubMed  Google Scholar 

  14. Kuisk, I.R., Li, H., Tran, D. & Capetanaki, Y. A single MEF2 site governs desmin transcription in both heart and skeletal muscle during mouse embryogenesis. Dev. Biol. 174, 1–13 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Kelly, R., Alonso, S., Tajbakhsh, S., Cossu, G. & Buckingham, M. Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J. Cell Biol. 129, 383–396 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Harvey, R.P. NK-2 homeobox genes and heart development. Dev. Biol. 178, 203–216 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, Y. & Evans, T. The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev. Biol. 174, 258–270 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Laverriere, A.C. et al. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J.Biol. Chem. 269, 23177–23184 (1994).

    CAS  PubMed  Google Scholar 

  19. Morrisey, E.E., Ip, H.S., Lu, M.M. & Parmacek, M.S. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev. Biol. 177, 309–322 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Edmondson, D.G., Lyons, G.E., Martin, J.F. & Olson, E.N. MEF2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120, 1251–1263 (1994).

    CAS  PubMed  Google Scholar 

  21. Kirby, M.L. & Waldo, K.L. Role of neural crest in congenital heart disease. cir. Res. 77, 211–215 (1995).

    Article  CAS  Google Scholar 

  22. Serbedzija, G.N., Bronner-Fraser, M. & Fraser, S.E. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297–307 (1992).

    CAS  PubMed  Google Scholar 

  23. Lyons, I. et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 9, 1654–1666 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, Q., Schwartz, J.A. & Olson, E.N. Control of cardiac morphogenesis and myogenesis by the myogenic transcription factor MEF2C. Science, in press (1997).

    Google Scholar 

  25. Eisenberg, L.M. & Markwald, R.R. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Cir. Res. 77, 1–6 (1995).

    Article  CAS  Google Scholar 

  26. Rossant, J. Mouse mutants and cardiac development: new molecular insights into cardiogenesis. Circ. Res. 78, 349–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Levin, M., Johnson, R.L., Stern, C.D., Kuehn, M. & Tabin, C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82, 803–814 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Lowe, L.A. et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Pexieder, T. Christen, Y., Vuillemin, M. & Patterson, D.F., in Congenital Heart Disease: Causes and Processes, 423 (Futura Publ. Co., Mount Kisco, N.Y.,1984).

    Google Scholar 

  30. Molkentin, J.D., Lin, Q., Duncan, S.A. & Olson, E.N. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes & Dev. 11, 1061–1072 (1997).

    Article  CAS  Google Scholar 

  31. McMahon, A.P. & Bradley, A. Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Martin, J.F., Bradley, A. & Olson, E.N. The paired-like homeobox gene Mhox is required for early events of skeletalogenesis in multiple lineages. Genes Dev. 9, 1237–1249 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, D., Thomas, T., Lin, Q. et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16, 154–160 (1997). https://doi.org/10.1038/ng0697-154

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0697-154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing