Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A missense mutation in the gene encoding the α1 subunit of the inhibitory glycine receptor in the spasmodic mouse

Abstract

Hereditary hyperekplexia, an autosomal dominant neurologic disorder characterized by an exaggerated startle reflex and neonatal hypertonia, can be caused by mutations in the gene encoding the α1 subunit of the inhibitory glycine receptor (GLRA1). Spasmodic (spd), a recessive neurologic mouse mutant, resembles hyperekplexia phenotypically, and the two disease loci map to homologous chromosomal regions. Here we describe a Gira1 missense mutation in spd that results in reduced agonist sensitivity in glycine receptors expressed in vitro. We conclude that spd is a murine homologue of hyperekplexia and that mutations in GLRA1/Glra1 can produce syndromes with different inheritance patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ryan, S.G. et al. Startle disease or hyperekplexia: response to clonazepam and assignment of the gene (STHE) to chromosome 5q by linkage analysis. Ann. Neurol. 31, 663–668 (1992).

    Article  CAS  Google Scholar 

  2. Nigro, M.A. & Lim, H.-C.N. Hyperekplexia and sudden neonatal death. Pediatr. Neurol. 8, 221–225 (1992).

    Article  CAS  Google Scholar 

  3. Giacoia, G.P. & Ryan, S.G. Am. J. Dis. Child, (in the press).

  4. Andermann, F., Keene, D.L., Andermann, E. & Quesney, L.F. Startle disease or hyperekplexia: further delineation of the syndrome. Brain 103, 985–997 (1980).

    Article  CAS  Google Scholar 

  5. Morley, D.J., Weaver, D.D. & Garg, B.P. Hyperexplexia: an inherited disorder of the startle response. Clin. Genet. 21, 388–396 (1982).

    Article  CAS  Google Scholar 

  6. Ryan, S.G. et al. Genetic and radiation hybrid mapping of the hyperekplexia region on chromosome 5q. Am. J. hum. Genet. 51, 1334–1343 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Grenningloh, G. et al. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 238, 215–220 (1987).

    Article  Google Scholar 

  8. Shiang, R. et al. Point mutations in the gene encoding the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nature Genet. 5, 351–358 (1993).

    Article  CAS  Google Scholar 

  9. Chai, C.K. Hereditary spasticity in mice. J. Hered. 52, 241–243 (1961).

    Article  Google Scholar 

  10. Lane, P.W., Ganser, A.L., Kerner, A.-L. & White, W.F., Spasmodic, a mutation on chromosome 11 in the mouse. J. Hered. 78, 353–356 (1987).

    Article  CAS  Google Scholar 

  11. Becker, C.-M. Disorders of the inhibitory glycine receptor: the spastic mouse. FASEB J. 4, 2767–2774 (1990).

    Article  CAS  Google Scholar 

  12. Buckwalter, M.S., Testa, C.M., Noebels, J.L. & Camper, S.A. Genetic mapping and evaluation of candidate genes for spasmodic, a neurological mouse mutation with abnormal startle response. Genomics 17, 279–286 (1993).

    Article  CAS  Google Scholar 

  13. Heller, A.H. & Hallett, M. Eiectrophysiological studies with the spastic mutant mouse. Brain Res. 234, 299–308 (1982).

    Article  CAS  Google Scholar 

  14. Cook, S.A. Research news. Mouse Genome 91, 117 (1993).

    Google Scholar 

  15. White, W.F. & Heller, A.H. Glycine receptor alteration in the mutant mouse spastic. Nature 298, 655–657 (1982).

    Article  CAS  Google Scholar 

  16. Becker, C.-M., Hermans-Borgmeyer, I., Schmitt, B. & Betz, H. The glycine receptor deficiency of the mutant mouse spastic: evidence for normal glycine receptor structure and localization. J. Neurosci. 6, 1358–1364 (1986).

    Article  CAS  Google Scholar 

  17. Eicher, E.M. & Lane, P. Assignment of LGXVI to chromosome 3 in the mouse. J. Hered. 71, 315–318 (1980).

    Article  CAS  Google Scholar 

  18. Malosio, M.-L. et al. Alternative splicing generates two variants of the α1 subunit of the inhibitory glycine receptor. J. biol. Chem. 264, 2048–2053 (1991).

    Google Scholar 

  19. Grenningloh, G. et al. Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes. EMBO J. 9, 771–776 (1990).

    Article  CAS  Google Scholar 

  20. Vandenberg, R.J., Rajendra, S., French, C., Barry, P.H. & Schofield, P.R. The extracellular disulfide loop motif of the inhibitory glycine receptor does not form the agonist binding site. Molec. Pharmacol. 44, 198–203 (1993).

    CAS  Google Scholar 

  21. Langosch, D., Becker, C.-M. & Betz, H. The inhibitory glycine receptor: a ligand-gated chloride channel of the central nervous system. Eur. J. Biochem, 194, 1–8 (1990).

    Article  CAS  Google Scholar 

  22. Langosch, D., Thomas, L. & Betz, H. Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc. natn. Acad. Sci. U.S.A. 85, 7394–7398 (1988).

    Article  CAS  Google Scholar 

  23. Becker, C.-M., Schmieden, V., Tarroni, P., Strasser, U. & Betz, H. Isoform-selective deficit of glycine receptors in the mouse mutant spastic. Neuron 8, 283–289 (1992).

    Article  CAS  Google Scholar 

  24. Schmieden, V., Grenningloh, G., Schofield, P.R. & Betz, H. Functional expression in Xenopus oocytes of the strychnine binding 48 kd subunit of the glycine receptor. EMBO J. 8, 695–700 (1989).

    Article  CAS  Google Scholar 

  25. Sontheimer, H. et al. Functional chloride channels by mammalian expression of rat glycine receptor subunit. Neuron 2, 1491–1497 (1989).

    Article  CAS  Google Scholar 

  26. Becker, C.-M., Hoch, W. & Betz, H. Glycine receptor heterogeneity in rat spinal cord during postnatal development. EMBO J. 7, 3717–3726 (1988).

    Article  CAS  Google Scholar 

  27. Betz, H. & Becker, C.-M. The mammalian glycine receptor: biology and structure of a neuronal chloride channel protein. Neurochem. Int. 13, 137–146 (1988).

    Article  CAS  Google Scholar 

  28. Langosch, D., Herbold, A., Schmieden, V., Borman, J. & Kirsch, J. Importance of Arg-219 for correct biogenesis of α1 homooligomeric glycine receptors. FEBS Lett. 336, 540–544 (1993).

    Article  CAS  Google Scholar 

  29. Schofield, P.R., Pritchett, D.B., Sontheimer, H., Kettenmann, H. & Seeburg, P.H. Sequence and expression of human GABAA receptor α1 and β1 receptor subunits. FEBS Lett. 244, 361–364 (1989).

    Article  CAS  Google Scholar 

  30. Shivers, B.D. et al. Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3, 327–337 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, S., Buckwalter, M., Lynch, J. et al. A missense mutation in the gene encoding the α1 subunit of the inhibitory glycine receptor in the spasmodic mouse. Nat Genet 7, 131–135 (1994). https://doi.org/10.1038/ng0694-131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0694-131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing