Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parental genomic imprinting of the human IGF2 gene

Abstract

The mouse igf2 gene, coding for the insulin–like growth factor II (IGF–II) is parentally imprinted, only the gene copy derived from the father is expressed. To know whether IGF2, the human homologue, is also imprinted, we used an Apal polymorphism at the 3′ untranslated region in order to distinguish between mRNA derived from each copy of the gene in placentae from heterozygote human fetuses, studied after careful removal of the decidua. Six term and two pre–term placentae of heterozygotes were studied, and in each case the cDNA contained only one of the two alleles present in the genomic DNA. In three cases the mother was homozygous for the non–expressed allele, allowing assignment of paternal origin to the transcribed gene copy. We conclude that, as in the mouse, human IGF2 is parentally imprinted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Surani, M.A.H., Barton, S.C. & Norris, M.L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Mann, J.R. & Lovell-Badge, R.H. Inviability of parthenogenotes is determined by pronuclei, not egg cytoplasm. Nature 310, 66–67 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Cattanach, B.M. & Kirk, M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315, 496–498 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Reik, W. Genomic imprinting and genetic disorders in man. Trends Genet. 5, 331–336 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Hall, J.G. Genomic imprinting: Review and reference to human diseases. Am. J. hum. Genet. 46, 857–873 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Henry, I. et al. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 351, 665–667 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Schroeder, W.T. et al. Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. Am. J. hum. Genet. 40, 413–412 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sapienza, C. Genome imprinting and carcinogenesis. Biochim. Biophys. Acta 1072, 51–61 (1991).

    CAS  PubMed  Google Scholar 

  10. Sapienza, C., Peterson, A.C., Rossant, J. & Balling, R. Degree of methylation of transgenes is dependent on gamete of origin. Nature 328, 251–254 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Swain, J.L., Stewart, T.A. & Leder, P. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50, 719–727 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Pourcel, C. Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation. Nature 329, 454–456 (1987).

    Article  PubMed  Google Scholar 

  13. Reik, W., Collick, A., Norris, M.L., Barton, S.C. & Surani, M.A.H. Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328, 248–251 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Barlow, D.P., Stoger, R., Herrmann, B.G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Leff, S.E. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nature Genet. 2, 259–263 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. DeChiara, T.M., Efstratiadis, A. & Robertson, E.J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 78–80 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Gray, A. et al. Tissue-specific and developmentally regulated transcription of IGF-II. DNA 6, 283–295 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Bell, G.I., Gerhard, D.S., Fong, N.M., Sanchez-Pescador, R. & Rall, L.B. Isolation of the human insulin-like growth factor genes: insulin-like growth factor II and insulin genes are contiguous. Proc. natn. Acad. Sci. U.S.A. 82, 6450–6454 (1985).

    Article  CAS  Google Scholar 

  21. Reeve, A.E. et al. Expression of insulin-like growth factor-ll transcripts in Wilms tumour. Nature 317, 258–260 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Julier, C. et al. lnsulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature 354, 155–159 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Tadokoro, K., Fujii, H., Inoue, T. & Yamada, M. Polymerase chain reaction (PCR) for detection of Apal polymorphism at the insulin like growth factor II gene (IGF2). Nucl. Acids Res. 19, 6967 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet. 1, 40–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Sussenbach, J.S. et al. Structure and post-trancriptional regulation of expression of the human IGF-I and IGF-II genes. In Modern Concepts of Insulin-like growth factors (ed. Spencer E.M.) 639–654 (Elsevier New York, 1992).

    Google Scholar 

  26. Rachmilewitz, J. et al. A. Parental imprinting of the human H19 gene. FEBS Lett. 309, 25–28 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Hergersberg, M. Biological aspects of cytosine methylation in eukaryotic cells. Experientia 47, 1171–1185 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Haig, D. & Graham, C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64, 1045–1046 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Polychronakos, C. The M6P/IGF-II receptor. in Molecular and cellular biology of the IGFs (eds Raizada M. & LeRoith D.) 369–379 (Plenum Press, New York, 1989).

    Google Scholar 

  30. Ozcelik, T. et al. U. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genet. 2, 265–269 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Nicholls, R.D., Knoll, J.H.M., Butler, M.G., Karam, S. & Lalande, M. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 342, 281–285 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cattanach, B.M. et al. candidate mouse model for Prader-Willi syndrome which shows an absence of Snrpn expression. Nature Genet. 2, 270–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. John, S.W.M., Weitzner, G., Rozen, R. & Scriver, C.R. A rapid procedure for extracting DNA from leukocytes. Nucl. Acids Res. 19, 408 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannoukakis, N., Deal, C., Paquette, J. et al. Parental genomic imprinting of the human IGF2 gene. Nat Genet 4, 98–101 (1993). https://doi.org/10.1038/ng0593-98

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0593-98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing