Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Linkage of familial combined hyperlipidaemia to chromosome 1q21–q23

Abstract

More than half of the patients with angiographically confirmed premature coronary heart disease (CHD) have a familial lipoprotein disorder1. Familial combined hyperlipidaemia (FCHL) represents the most common genetic dyslipidemia with a prevalence of 1.0–2.0% (refs 2,3). FCHL is estimated to cause 10–20% of premature CHD (ref. 1) and is characterized by elevated levels of cholesterol, triglycerides, or both3,4. Attempts to characterize genes predisposing to FCHL have been hampered by its equivocal phenotype definition, unknown mode of inheritance and genetic heterogeneity. In order to minimize genetic heterogeneity, we chose 31 extended FCHL families from the isolated Finnish population5 that fulfilled strictly defined criteria for the phenotype status. We performed linkage analyses with markers from ten chromosomal regions that contain lipid-metabolism candidate genes. One marker, D1S104, adjacent to the apolipoprotein A-ll (APOA2) gene on chromosome 1, revealed a lod score of Z=3.50 assuming a dominant mode of inheritance. Multipoint analysis combining information from D1S104 and the neighbouring marker D1S1677 resulted in a lod score of 5.93. Physical positioning of known genes in the area (APOA2 and three selectin genes) outside the linked region suggests a novel locus for FCHL on 1q21-q23. A second paper in this issue (Castellani et al.) reports the identification of a mouse combined hyperlipidaemia locus in the syntenic region of the mouse genome6, thus further implicating a gene in this region in the aetiology of FCHL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Genest, J.J. Jr., et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 85, 2025–2033 (1992).

    Article  PubMed  Google Scholar 

  2. Grundy, S.M., Chait, A. & Brunzell, J.D. Familial combined hyperlipidemia workshop. Arteriosclerosis 7, 203–207 (1987).

    Google Scholar 

  3. Goldstein, J.L., Schrott, H.G., Hazzard, W.R., Bierman, E.L. & Motulsky, A.G. Hyperlipidemia in coronary heart disease II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J. Clin. Invest. 52, 1544–1568 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nikkilä, E.A. & Aro, A. Family study of serum lipids and lipoproteins in coronary heart disease. Lancet 1, 954–959 (1973).

    Article  PubMed  Google Scholar 

  5. De la Chapelle, A. Disease gene mapping in isolated human populations: the example of Finland. J. Med. Genet. 30, 857–865 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Castellani et al. Mapping a gene for combined hyperlipidaemia in a mutant mouse strain. Nature Genet. 18, 372–375 (1998).

    Article  Google Scholar 

  7. Cullen, P., Farren, B., Scott, J. & Farrall, M. Complex segregation analysis provides evidence for a major gene acting on serum triglyceride levels in 55 British families with familial combined hyperlipidemia. Arterioscler. Tromb. 14, 1233–1249 (1994).

    Article  CAS  Google Scholar 

  8. Jarvik, G.P. et al. Genetic predictors of FCHL in four large pedigrees. Influence of apoB level major locus predicted genotype and LDL subclass phenotype. Arterioscler. Thromb. 14, 1687–1694 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Austin, M.A., Brunzell, J.D., Fitch, W.L. & Krauss, R.M. Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. Arteriosclerosis 9, 335–344 (1989).

    Article  Google Scholar 

  10. Nishina, P.M., Johnson, J.P., Naggert, J.K. & Krauss, R.M. Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19. Proc. Natl. Acad. Sci. USA 89, 708–712 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wojciechowski, A.P. et al. Familial combined hyperlipidaemia linked to the apolipoprotein AI-CIII-AIV gene cluster on chromosome 11q23-q24. Nature 349, 161–164 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Dallinga-Thie, G.M. et al. Complex genetic contribution of the apo AI-CII-AIV gene cluster to familial combined hyperlipidemia. J. Clin. Invest. 99, 953–961 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marcil, M. et al. Lack of association of the apolipoprotein A-I-C-III-A-IV gene Xmnl and Sstl polymorphisms and of the lipoprotein lipase mutations in familial combined hyperlipoproteinemia in French Canadian subjects. J. Lipid Res. 37, 309–319 (1996).

    CAS  PubMed  Google Scholar 

  14. Kwiterovich, P.O. Jr., Genetics and molecular biology of familial combined hyperlipidemia. Curr. Opin. Lipidol. 4, 133–143 (1993).

    Article  CAS  Google Scholar 

  15. Reymer, P.W.A. et al. A frequently occurring mutation in the lipoprotein lipase gene (Asn291Ser) contributes to the expression of familial combined hyperlipidemia. Hum. Mol. Genet. 4, 1543–1549 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Pajukanta, P. et al. No evidence of linkage between familial combined hyperlipidemia and genes encoding lipolytic enzymes in Finnish families. Arterioscler. Thromb. Vase. Biol. 17, 841–850 (1997).

    Article  CAS  Google Scholar 

  17. Terwilliger, J.D. A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am. J. Hum. Genet 56, 777–787 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Terwilliger, J.D., Zöllner, S., Laan, M. & Pääbo, S. Mapping genes through the use of linkage disequilibrium generated by genetic drift. Hum. Hered. (in press).

  19. Weiss, K.M. Genetic Variation and Human Disease: Principles and Evolutionary Approaches. (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  20. Paigen, B. et al. Ath1, a gene determining atherosclerosis susceptibility and high density lipoprotein levels in mice. Proc. Natl. Acad. Sci. USA 87, 3763–3767 (1987).

    Article  Google Scholar 

  21. Voutilainen, E. Serum lipids and lipoproteins in male survivors of acute myocardial infarction and their first-degree relatives: a case-control study. (Kuopio University Publications D: Medical Sciences, Kuopio, Finland, 1992).

  22. Vartiainen, E. et al. Twenty-year trends in coronary risk factors in North Karelia and in other areas of Finland. Int. J. Epidemiol. 23, 495–504 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Porkka, K.V.K., Viikari, J., Rönnemaa, T., Marniemi, J. & Åkerblom, H.K. Age and gender specific serum lipid percentiles of Finnish children and young adults. The Cardiovascular Risk in Young Finns study. Acta Paediatr. 83, 838–848 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Cuthbert, J.A., East, C.A. & Bilheimer, D.W. Detection of familial hypercholesterolemia by assaying functional low-density-lipoprotein receptors on lymphocytes. N. Engl. J. Med. 314, 879–883 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Syvänen, A.-C., Sajantila, A. & Lukka, M. Identification of individuals by analysis of biallelic DNA markers, using PCR and solid-phase minisequencing. Am. J. Hum. Genet. 52, 46–59 (1993).

    PubMed  PubMed Central  Google Scholar 

  26. Ott, J. Analysis of Human Genetic Linkage. 2nd ed. (Johns Hopkins University Press, Baltimore, 1991).

    Google Scholar 

  27. Lathrop, G.M., Lalouel, J.-M., Julier, C.A. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. Natl. Acad. Sci. USA 81, 3443–3446 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cottingham, R.W. Jr., Idury, R.M. & Schaffer, A.A. Faster sequential genetic linkage computations. Am. J. Hum. Genet 53, 252–263 (1993).

    PubMed  PubMed Central  Google Scholar 

  29. Schaffer, A.A., Gupta, S.K., Shriram, K. & Cottingham, R.W., Avoiding recomputation in linkage analysis. Hum. Hered. 44, 225–237 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Risch, N. & Giuffra, L. Model misspecification and multipoint linkage analysis. Hum. Hered. 42, 77–92 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Terwilliger, J.D. & Ott, J. A novel polylocus method for linkage analysis using the lod- score or affected sib-pair method. Genet. Epidemiol. 10, 477–482 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Terwilliger, J.D. Linkage analysis - model based, in Encyclopedia of Biostatistics. (eds Armitage, P. & Cotton, T.) (John Wiley & Sons), in press.

  33. Durner, M., Greenberg, D.A. & Hodge, S.E. Inter- and intrafamilial heterogeneity: effective sampling strategies and comparison of analysis methods. Am. J. Hum. Genet. 51, 859–870 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuokkanen, S. et al. Putative vulnerability locus to multiple sclerosis maps to 5p14-p12 in a region syntenic to the murine locus Eae2. Nature Genet. 13, 477–480 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Peltonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pajukanta, P., Nuotio, I., Terwilliger, J. et al. Linkage of familial combined hyperlipidaemia to chromosome 1q21–q23. Nat Genet 18, 369–373 (1998). https://doi.org/10.1038/ng0498-369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0498-369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing