Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neurofibromatosis 2 tumour suppressor schwannomin interacts with βII-spectrin

Abstract

NF2 is the most commonly mutated gene in benign tumours of the human nervous system. The NF2 protein, called schwannomin or merlin, is absent in virtually all schwannomas, and many meningiomas and ependymomas1-3. Using the yeast two-hybrid system, we identified βII-spectrin (also known as fodrin) as a schwannomin-binding protein. Interaction occurred between the carboxy-terminal domain of schwannomin isoform 2 and the ankyrin-binding region of βII-spectrin. Isoform 1 of schwannomin, in contrast, interacted weakly with βII-spectrin, presumably because of its strong self-interaction. Thus, alternative splicing of NF2 may regulate βII-spectrin binding. Schwannomin co-immunoprecipitated with βII-spectrin at physiological concentrations. The two proteins interacted in vitro and co-localized in several target tissues and in STS26T cells. Three naturally occurring NF2 missense mutations showed reduced, but not absent, βII-spectrin binding, suggesting an explanation for the milder phenotypes seen in patients with missense mutations. STS26T cells treated with NF2 anti-sense oligonucleotides showed alterations of the actin cyto-skeleton. Schwannomin itself lacks the actin binding sites found in ezrin, radixin and moesin, suggesting that signalling to the actin cytoskeleton occurs via actin-binding sites on βII-spectrin. Thus, schwannomin is a tumour suppressor directly involved in actin-cytoskeleton organization, which suggests that alterations in the cytoskeleton are an early event in the pathogenesis of some tumour types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sainz, J. et al. Mutations of the neurofibromatosis type 2 gene and lack of the gene product in vestibular schwannomas. Hum. Mol. Genet. 3, 885–891 (1994).

    Article  CAS  Google Scholar 

  2. Lekanne Deprez, R.H. et al. Frequent NF2 gene transcript mutations in sporadic meningiomas and vestibular schwannomas. Am. J. Hum. Genet. 54, 1022–1029 (1994).

    CAS  PubMed  Google Scholar 

  3. Huynh, D.P., Mautner, V., Baser, M.E., Stavrou, D. & Pulst, S.-M. Immunohistochemical detection of schwannomin and neurofibromin in vestibular schwannomas, ependymomas, and meningiomas. J. Neuropathal. Exp. Neurol. 56, 382–390 (1997).

    Article  CAS  Google Scholar 

  4. Rouleau, G.A. et al. Alteration in a new gene coding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363, 515–521 (1993).

    Article  CAS  Google Scholar 

  5. Trofatter, J.A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumour suppressor. Cell 72, 791–800 (1993)

    Article  CAS  Google Scholar 

  6. Huynh, D.P. & Pulst, S.-M. Neurofibromatosis 2 antisense oligodeoxynucleotides induce reversible inhibition of schwannomin synthesis and cell adhesion in STS26T and T98G cells. Oncogene 13, 73–84 (1996).

    CAS  PubMed  Google Scholar 

  7. Takeshima, H. et al. Detection of cellular proteins that interact with the NF2 tumour suppressor gene product. Oncogene 9, 2135–2144 (1994).

    CAS  PubMed  Google Scholar 

  8. Huynh, D.P., Nechiporuk, T. & Pulst, S.-M. Alternative transcripts in the mouse neurofibromatosis type 2 (NF2) gene are conserved and code for schwannomins with distinct C-terminal domains. Hum. Mol. Genet. 3, 1075–1079 (1994).

    Article  CAS  Google Scholar 

  9. Poullet, P. & Tamanoi, T. Use of the yeast two-hybrid system to evaluate ras interactions with neurofibromin GTPase-activating proteins. Methods Enzymol. 255, 488–497 (1995).

    Article  CAS  Google Scholar 

  10. Hu, R.-J., Watanabe, M. & Bennett, V.J. Characterization of human brain cDNA encoding the general isoform of beta-spectrin. Biol. Chem. 267, 18715–18722 (1992).

    CAS  Google Scholar 

  11. Sherman, L. et al. Interdomain binding mediates tumour growth suppression by the NF2 gene product. Oncogene 15, 2505–2509 (1997).

    Article  CAS  Google Scholar 

  12. Bretscher, A., Gary, R. & Berryman, M. Soluble ezrin purified from placenta exists as stable monomers and elongated dimers with masked C-terminal exrin-radixin-moesin association domains. Biochemistry 34, 16830–16837 (1995).

    Article  CAS  Google Scholar 

  13. Bennett, V. & Lambert, S. The spectrin skeleton: from red cells to brain. J. Clin. Invest. 87, 1483–1489 (1991).

    Article  CAS  Google Scholar 

  14. Winkelmann, J.C. & Forget, B.G. Erythroid and nonerythroid spectrins. Blood 81, 3173–3185 (1993).

    CAS  PubMed  Google Scholar 

  15. Discher, D., Parra, M., Conboy, J.G. & Mohandas, N. Mechanochemistry of the alternatively spliced spectrin-actin binding domain in membrane skeletal protein 4.1. J. Biol. Chem. 268, 7186–7195 (1993).

    CAS  PubMed  Google Scholar 

  16. Kennedy, S.P., Warren, S.L., Forget, B.G. & Morrow, J.S. Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid β-spectrin. J. Cell Biol. 115, 267–277 (1991).

    Article  CAS  Google Scholar 

  17. Merel, P. et al. Screening for germline mutations in the NF2 gene. Genes Chromosom. Cancer. 12, 117–127 (1995).

    Article  CAS  Google Scholar 

  18. Evans, D.G.R. et al. Diagnosis issues in a family with late onset type 2 neurofibromatosis. J. Med. Genet. 32, 470–474 (1995).

    Article  CAS  Google Scholar 

  19. Kluwe, L. & Mautner, V.F. A missense mutation in the NF2 gene results in moderate and mild clinical phenotypes of neurofibromatosis type 2. Hum. Genet. 97, 224–227 (1996).

    Article  CAS  Google Scholar 

  20. Morcos, P., Thapar, N., Tusneem, N., Stacey, D. & Tamanoi, F. Identification of neurofibromin mutants that exhibit allele specificity or increased Ras affinity resulting in suppression of activated ras alleles. Mol. Cell. Biol. 16, 2496–2503 (1996).

    Article  CAS  Google Scholar 

  21. Mautner, V.-F. et al. The neuroimaging and clinical spectrum of neurofibromatosis 2. Neurosurgery 38, 880–886 (1996).

    Article  CAS  Google Scholar 

  22. Claudio, J.O., Veneziale, R.W., Menko, A.S. & Rouleau, G.A. Expression of schwannomin in lens and Schwann cells. Neuroreport 8, 2025–2030 (1997).

    Article  CAS  Google Scholar 

  23. Sanderson, J., Marcantonio, J.M. & Duncan, G. Calcium ionophore induced proteolysis and cataract: inhibition by cell permeable calpain antagonists. Biochem. Biophys. Res. Commun. 218, 893–901 (1996).

    Article  CAS  Google Scholar 

  24. Gundersen, D., Orlowski, J. & Rodriguez-Boulan, E. Apical polarity of Na,K-ATPase in retinal pigment epithelium is linked to a reversal of the ankyrin-fodrin submembrane cytoskeleton. J. Cell Biol. 112, 863–872 (1991).

    Article  CAS  Google Scholar 

  25. Marrs, J.A. et al. Plasticity in epithelial cell phenotype: modulation by expression of different cadherin cell adhesion molecules. J. Cell Biol. 129, 507–519 (1995).

    Article  CAS  Google Scholar 

  26. Santos, A. et al. Congenital hypertrophy of the retinal pigment epithelium associated with familial adenomatous polyposis. Retina 14, 6–9 (1994).

    Article  CAS  Google Scholar 

  27. Vybiral, T. et al. Human cardiac and skeletal muscle spectrins: differential expression and localization. Cell Motil. Cytoskeleton 21, 293–304 (1992).

    Article  CAS  Google Scholar 

  28. den Bakker, M.A. et al. The product of the NF2 tumour suppressor gene localizes near the plasma membrane and is highly expressed in muscle cells. Oncogene 10, 757–763 (1995).

    CAS  PubMed  Google Scholar 

  29. Cavanaugh, A.H. et al. Activity of RNA polymerase I transcription factor DBF blocked by Rb gene product. Nature 374, 177–180 (1995).

    Article  CAS  Google Scholar 

  30. Turunen, O., Wahlstrom, T. & Vaheri, A. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J. Cell Biol. 126, 1445–1453 (1994).

    Article  CAS  Google Scholar 

  31. Siano, M. et al. Neurofibromatosis 2 tumour suppressor protein colocalizes with ezrin and CD44 and associates with actin-containing cytoskeleton. J. Cell Sci. 110, 2249–2260 (1997).

    Google Scholar 

  32. Gonzales-Agosti, C. et al. The merlin tumour suppressor localizes preferentially in membrane ruffles. Oncogene 13, 1239–1247 (1996).

    Google Scholar 

  33. Deguen, B. et al. Impaired interaction of naturally occurring mutant NF2 protein with actin-based cytoskeleton and membrane. Hum. Mol. Genet. 7, 217–226 (1998).

    Article  CAS  Google Scholar 

  34. Glenney, J. Jr., Glenney, P. & Weber, K. F-actin-binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule. J. Biol. Chem. 257, 9781–9787 (1982).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan M. Pulst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scoles, D., Huynh, D., Morcos, P. et al. Neurofibromatosis 2 tumour suppressor schwannomin interacts with βII-spectrin. Nat Genet 18, 354–359 (1998). https://doi.org/10.1038/ng0498-354

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0498-354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing