Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells

Abstract

The rat small eye strain (rSey) lacks eyes and nose in the homozygote, and is similar to the mouse Sey strain with mutations in the Pax-6 gene. We isolated Pax-6 cDNA clones from an rSey homozygote library, and found an internal deletion of about 600 basepairs in the serine/threonine-rich domain. At the genomic level, a single base (G) insertion in an exon generates an abnormal 5′ donor splice site, thereby producing the truncated mRNA. Anterior midbrain crest cells in the homozygous rSey embryos reached the eye rudiments but did not migrate any further to the nasal rudiments, suggesting that the Pax-6 gene is involved in conducting migration of neural crest cells from the anterior midbrain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walther, C. et al. Pax: a murine multigene family of paired box-containing genes. Genomics 11, 424–434 (1991).

    Article  CAS  Google Scholar 

  2. Gruss, P. & Walther, C. Pax in development. Cell 69, 719–722 (1992).

    Article  CAS  Google Scholar 

  3. Hill, R.E. et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991).

    Article  CAS  Google Scholar 

  4. Ton, C.C.T. et al. Positional cloning and characterization of a paired box-and homeobox-containing gene from the ariiridia region. Cell 67, 1059–1074 (1991).

    Article  CAS  Google Scholar 

  5. Jordan, T. et al. The human PAX6 gene is mutated in two patients with aniridia. Nature Genet. 1, 328–332 (1992).

    Article  CAS  Google Scholar 

  6. Glaser, T., Walton, D.S. & Mass, H.L. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nature Genet. 2, 232–238 (1992).

    Article  CAS  Google Scholar 

  7. Glaser, T., Lane, J. & Housman, D. A mouse model of the aniridia-Wilms tumor deletion syndrome. Science 250, 823–827 (1990).

    Article  CAS  Google Scholar 

  8. Hogah, B.L.M., Hirst, E.M.A., Horsburgh, G. & Hetherington, C.M. Small eye (Sey): a mouse model for the genetic analysis of craniofacial abnormalities. Development 103 (Suppl.), 115–119 (1988).

    Google Scholar 

  9. Tan, S.S. & Morriss-Kay, G.M. Analysis of cranial neural crest cell migration and early fates in postimplantation rat chimeras. J. Embryol. Exp. Morphol. 98, 21–58 (1986).

    CAS  PubMed  Google Scholar 

  10. Serbedzija, G.N., Bronner-Fraser, M. & Fraser, S.E. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297–307 (1992).

    CAS  PubMed  Google Scholar 

  11. Walther, C. & Gruss, P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449 (1991).

    CAS  Google Scholar 

  12. Senapathy, P., Shapiro, M.B. & Harris, N.L. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Meth. Enzymol. 183, 252–278 (1990).

    Article  CAS  Google Scholar 

  13. Lumsden, A., Sprawson, N. & Graham, A. Segmental origin and migration of neUral crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291 (1991).

    CAS  Google Scholar 

  14. Fukiishi, Y. & Morriss-Kay, G.M. Migration of cranial neural crest cells to the pharyngeal arches and heart in rat embryos. Cell Tissue Res. 268, 1–8 (1992).

    Article  CAS  Google Scholar 

  15. Dobkin, C., Pergolizzi, R.G., Bahre, P. & Bank, A. Abnormal splice in a mutant human beta-globin gene not at the site of a mutation. Proc. natn. Acad. Sci. U.S.A. 80, 1184–1188 (1983).

    Article  CAS  Google Scholar 

  16. Treisrnan, R., Orkin, S.H. & Maniatis, T. Specific transcription and RNA splicing defects in five cloned betathalassaemia genes. Nature 302, 591–596 (1983).

    Article  Google Scholar 

  17. Rees, D.J.G., Rizza, C.R. & Brownlee, G.G. Haemophilia B caused by a point mutation in a donor splice junction of the human factor IX gene. Nature 316, 643–645 (1985).

    Article  CAS  Google Scholar 

  18. DiLella, A.G., Marvit, J., Lidsky, A.S., Guettler, F. & Woo, S.L.C. Tight linkage between a splicing mutation and a specific DNA haplotype in phenylketonuria. Nature 322, 799–803 (1986).

    Article  CAS  Google Scholar 

  19. Myerowitz, R. Splice junction mutation in some Ashkenazi Jews with Tay-Sachs disease: evidence against a single defect within this ethnic group. Proc. natn. Acad. Sci. U.S.A. 85, 3955–3959 (1988).

    Article  CAS  Google Scholar 

  20. Takeuchi, T. et al. Molecular mechanism of growth hormone (GH) deficiency in the spontaneous dwarf rat: detection of abnormal splicing of GH messenger ribonucleic acid by the polymerase chain reaction. Endocrinol. 126, 31–38 (1990).

    Article  CAS  Google Scholar 

  21. Nakajima, H. et al. Genetic defect in muscle phosphofructokinase deficiency. Abnormal splicing of the muscle phosphofructokinase gene due to a point mutation at the 5′-splice site. J. biol. Chem. 265, 9392–9395 (1990).

    CAS  PubMed  Google Scholar 

  22. Su, T.S. & Lin, L.H. Analysis of a splice acceptor site mutation which produces multiple splicing abnormalities in the human argininosuccinate synthetase locus. J. biol. Chem. 265, 19716–19720 (1990).

    CAS  PubMed  Google Scholar 

  23. Parkinson, D.B. & Thakker, R.V. A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nature Genet. 1, 149–152 (1992).

    Article  CAS  Google Scholar 

  24. Atweh, G.F. et al. A new mutation in IVS-I of the human beta globin gene causing beta thalassemia due to abnormal splicing. Blood 70, 147–151 (1987).

    CAS  PubMed  Google Scholar 

  25. Nakano, T. & Suzuki, K. Genetic cause of a juvenile form of Sandhoff disease. Abnormal splicing of beta-hexosamin idase beta chain gene transcript due to a point mutation within intron 12. J. biol. Chem. 264, 5155–5158 (1989).

    CAS  PubMed  Google Scholar 

  26. Nelson, C., Rabb, H. & Arnaout, M.A. Genetic cause of leukocyte adhesion molecule deficiency. Abnormal splicing and a missense mutation in a conserved region of CD18 impair cell surface expression of beta2 integrins. J. biol. Chem. 267, 3351–3357 (1992).

    CAS  PubMed  Google Scholar 

  27. Hynes, R.O. & Lander, A.D. Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68, 303–322 (1992).

    Article  CAS  Google Scholar 

  28. Goulding, M.D. et al. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J. 10, 1135–1147 (1991),

    Article  CAS  Google Scholar 

  29. Epstein, D.J., Vekemans, M. & Gros, P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of pax-3. Cell 67, 767–774 (1991).

    Article  CAS  Google Scholar 

  30. Tassabehji, M. et al. Waardenburg's syndrome patients have mutations in the human homologue of the pax-3 paired box gene. Nature 355, 635–636 (1992).

    Article  CAS  Google Scholar 

  31. Baldwin, C.T., Hoth, C.F., Amos, J.A., da-Silva, E.O. & Milunsky, A. Anexonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature 355, 637–638 (1992).

    Article  CAS  Google Scholar 

  32. Moase, C.E. & Trasler, D.G. N-CAM alterations in splotch neural tube defect mouse embryos. Development 113, 1049–1058 (1991).

    CAS  PubMed  Google Scholar 

  33. Noji, S. et al. Spatial and temporal expression pattern of retinoic acid receptor genes during mouse bone development. FEBS Lett. 257, 93–96 (1989).

    Article  CAS  Google Scholar 

  34. Osumi-Yamashita, N., Asada, S. & Eto, K.J. Distribution of F-actin during mouse facial morphogenesis and its perturbation with cytochalasin D using whole embryo culture. Craniofac. Genet. dev. Biol. 12, 130–140 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuo, T., Osumi-Yamashita, N., Noji, S. et al. A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nat Genet 3, 299–304 (1993). https://doi.org/10.1038/ng0493-299

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0493-299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing