Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The structural and functional diversity of dystrophin

Abstract

Duchenne and Becker muscular dystrophies are caused by defects of the dystrophin gene. Expression of this large X-linked gene is under elaborate transcriptional and splicing control. At least five independent promoters specify the transcription of their respective alternative first exons in a cell-specific and developmentally controlled manner. Three promoters express full-length dystrophin, while two promoters near the C terminus express the last domains in a mutually exclusive manner. Six exons of the C terminus are alternatively spliced, giving rise to several alternative forms. Genetic, biochemical and anatomical studies of dystrophin suggest that a number of distinct functions are subserved by its great structural diversity. Extensive studies of dystrophin may lead to an understanding of the cause and perhaps a rational treatment for muscular dystrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meryon, E. On granular and fatty degeneration of the voluntary muscles. Med. Chir. Trans. 35, 73–84 (1852).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Duchenne, G. Recherches sur la paralysie musculaire pseudo-hypertrophique ou paralysie myo-sclerosique in Archives Generales de Medecine VI Serie, tome 11 (ed Asselin, P) 1, 5–25, 179–209 (Lasegue & Duplay, Paris, 1868).

    Google Scholar 

  3. Moser, H. Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention. Hum. Genet. 66, 17–40 (1984).

    CAS  PubMed  Google Scholar 

  4. Emery, A.E.H. Genetics in Duchenne Muscular Dystrophy 2 Oxford Monographs on Medical Genetics (eds Motulsky, A. G. et al.) 149–165 (Oxford University Press, New York, 1987).

    Google Scholar 

  5. Becker, P.E. Eine neue X-chromosomeale muskeldystrophie. Arch. Psychiatr. Z. Neurol. 193, 427–427 (1955).

    CAS  Google Scholar 

  6. Kingston, H.M. et al. Genetic linkage between Becker muscular dystrophy and a polymorphic DNA sequence on the short arm of the X chromosome. J. med. Genet. 20, 255–258 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kunkel, L.M. Analysis of deletions in DNA from patients with Becker and Duchenne muscular dystrophy. Nature 322, 73–77 (1986).

    CAS  PubMed  Google Scholar 

  8. Monaco, A.P. et al. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323, 646–650 (1986).

    CAS  PubMed  Google Scholar 

  9. Burghes, A.H. et al. A cDNA clone from the Duchenne/Becker muscular dystrophy gene. Nature 328, 434–437 (1987).

    CAS  PubMed  Google Scholar 

  10. Hoffman, E.P., Brown, R.J. & Kunkel, L.M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    CAS  PubMed  Google Scholar 

  11. Koenig, M. et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517 (1987).

    CAS  PubMed  Google Scholar 

  12. Monaco, A.P. et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2, 90–95 (1988).

    CAS  PubMed  Google Scholar 

  13. Koenig, M., Monaco, A.P. & Kunkel, L.M. The complete sequence of dystrophin predicts a rod-shaped cytoskel protein. Cell 53, 219–226 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Davison, M.D., Baron, M.D., Critchley, D.R. & Wootton, J.C. Structural analysis of homologous repeated domains in alpha-actinin and spectrin. Int. J. Biol. Macromol. 11, 81–90 (1989).

    CAS  PubMed  Google Scholar 

  15. Hammonds, R.J. Protein sequence of DMD gene is related to actin-binding domain of alpha-actinin. Cell 51, 1 (1987).

    CAS  PubMed  Google Scholar 

  16. Dubreuil, R.R. Structure and evolution of the actin crosslinking proteins. Bioessays 13, 219–226 (1991).

    CAS  PubMed  Google Scholar 

  17. Bennett, V. Spectrin: a structural mediator between diverse plasma membrane proteins and the cytoplasm. Curr. Op. Cell Biol. 2, 51–56 (1990).

    CAS  PubMed  Google Scholar 

  18. Coleman, T.R., Fishkind, D.J., Mooseker, M.S. & Morrow, J.S. Functional diversity among spectrin isoforms. Cell motil. Cytoskel. 12, 225–247 (1989).

    CAS  Google Scholar 

  19. Sugita, H. et al. Negative immunostaining of Duchenne muscular dystrophy (DMD)and mdx muscle surface membrane with an antibody against synthetic peptide fragment predicted from DMD cDNA. Proc. Jap. Acad. 64B, 37–39 (1988).

    Google Scholar 

  20. Arahata, K. et al. Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide. Nature 333, 861–863 (1988).

    CAS  PubMed  Google Scholar 

  21. Bonilla, E. et al. Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface. Cell 54, 447–452 (1988).

    CAS  PubMed  Google Scholar 

  22. Hoffman, E.P. et al. Cell and fiber-type distribution of dystrophin. Neuron 1, 411–420 (1988).

    CAS  PubMed  Google Scholar 

  23. Nudel, U., Robzyk, K. & Yaffe, D. Expression of the putative Duchenne muscular dystrophy gene In differentiated myogenic cell cultures and in the brain. Nature 331, 635–638 (1988).

    CAS  PubMed  Google Scholar 

  24. Zubrzycka-Gaarn, E.E. et al. The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature 333, 466–469 (1988).

    CAS  PubMed  Google Scholar 

  25. Miike, T., Miyatake, M., Zhao, J., Yoshioka, K. & Uchino, M. Immunohistochemical dystrophin reaction in synaptic regions. Brain Dev. 11, 344–6 (1989).

    CAS  PubMed  Google Scholar 

  26. Samitt, C.E. & Bonilla, E. Immunocytochemical study of dystrophin at the myotendinous junction. Muscle Nerve 13, 493–500 (1990).

    CAS  PubMed  Google Scholar 

  27. Lidov, H.G., Byers, T.J., Watkins, S.C. & Kunkel, L.M. Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature 348, 725–728 (1990).

    CAS  PubMed  Google Scholar 

  28. Byers, T.J., Kunkel, L.M. & Watkins, S.C. The subcellular distribution of dystrophin in mouse skeletal, cardiac, and smooth muscle. J. Cell Biol. 115, 411–421 (1991).

    CAS  PubMed  Google Scholar 

  29. Porter, G.A., Dmytrenko, G.M., Winkelmann, J.C. & Bloch, R.J. Dystrophin colocalizes with β-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J. Cell Biol. 117, 997–1005 (1992).

    CAS  PubMed  Google Scholar 

  30. Minetti, C., Beltrame, F., Marcenaro, G. & Bonilla, E. Dystrophin at the plasma membrane of human muscle fibers shows a costameric localization. Neuromus. Dis. 2, 99–109 (1992).

    CAS  Google Scholar 

  31. Straub, V., Bittner, R.E., Leger, J.J. & Voit, T. Direct visualization of the dystrophin network on skeletal muscle fiber membrane. J. Cell Biol. 119, 721–730 (1992).

    Google Scholar 

  32. Masuda, T., Fujimaki, N., Ozawa, E. & Ishikawa, H. Confocal laser microscopy of dystrophin localization in guinea pig skeletal muscle fibers. J. Cell Biol. 119, 543–548 (1992).

    CAS  PubMed  Google Scholar 

  33. Bar, S. et al. A novel product of the Duchenne muscular dystrophy gene which greatly differs from the known isoforms in its structure and tissue distribution. Biochem. J. 272, 557–60 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rapaport, D. et al. Characterization and cell type distribution of a novel, major transcript of the Duchenne muscular dystrophy gene. Differentiation 49, 187–93 (1992).

    CAS  PubMed  Google Scholar 

  35. Rapaport, D., Fuchs, O., Nudel, U. & Yaffe, D. Expression of the Duchenne Muscular Dystrophy Gene Products in Embryonic Stem Cells and Their Differentiated Derivatives. J. Biol. Chem. 267, 21289–21292 (1992).

    CAS  PubMed  Google Scholar 

  36. Lederfein, D. et al. A 71–kilodalton protein is the major product of the Duchenne muscular dystrophy gene in brain and other nonmuscle tissues. Proc. natn. Acad. Sci. U.S.A. 89, 5346–5350 (1992).

    CAS  Google Scholar 

  37. Blake, D.J. et al. Charaterization of a 4.8kb transcript from the Duchenne muscular dystrophy locus expressed in Schwannoma cells. Hum. molec. Genet. 1, 103–109 (1992).

    CAS  PubMed  Google Scholar 

  38. Hugnot, J.P. et al. Distal transcript of the dystrophin gene initiated from an alternative first exon and encoding a 75–kDa protein widely distributed in nonmuscle tissues. Proc. natn. Acad. Sci. U.S.A. 89, 7506–7510 (1992).

    CAS  Google Scholar 

  39. Byers, T.J., Lidov, H.G.W. & Kunkel, L.M. An alternative dystrophin transcript specific to peripheral nerve. Nature Genet. (in the press).

  40. Cox, G.A., Phelps, S.F., Chapman, V.M. & Chamberlain, J.S. New mdx mutation disrupts expression of muscle and nonmuscle forms of dystrophin. Nature Genet. 3, (1993).

  41. Chelly, J. et al. Quantitative estimation of minor mRNAs by cDNA-polymerase chain reaction. Application to dystrophin mRNA in cultured myogenic and brain cells. Eur. J. Biochem. 187, 691–8 (1990).

    CAS  PubMed  Google Scholar 

  42. Koenig, M. & Kunkel, L.M. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J. biol. Chem. 265, 4560–6 (1990).

    CAS  PubMed  Google Scholar 

  43. Yoshida, M., Suzuki, A., Shimizu, T. & Ozawa, E. Proteinase-sensitive sites on isolated rabbit dystrophin. J. Biochem. (Tokyo) 112, 433–439 (1992).

    CAS  PubMed  Google Scholar 

  44. Cottin, P. et al. In vitro digestion of dystrophin by calcium-dependent proteases, calpains I and II. Biochimie 74, 565–70 (1992).

    CAS  PubMed  Google Scholar 

  45. Levine, B.A., Moir, A.J., Patchell, V.B. & Perry, S.V. The interaction of actin with dystrophin. FEBS Lett. 263, 159–162 (1990).

    CAS  PubMed  Google Scholar 

  46. Hemmings, L., Kuhlman, P.A. & Critchley, D.R. Analysis of the actin-binding domain of alpha-actinin by mutagenesis and demonstration that dystrophin contains a functionally homologous domain. J. cell Biol. 116, 1369–1380 (1992).

    CAS  PubMed  Google Scholar 

  47. Spelcher, D.W. & Marchesi, V.T. Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature 311, 177–180 (1984).

    Google Scholar 

  48. Moncrief, N.D., Kretsinger, R.H. & Goodman, M. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J. molec. Evol. 30, 522–562 (1990).

    CAS  PubMed  Google Scholar 

  49. Nakayama, S., Moncrief, N.D. & Kretsinger, R.H. Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. J. molec. Evol. 34, 416–448 (1992).

    CAS  PubMed  Google Scholar 

  50. Burridge, K. & Feramisco, J.R. Non-muscle alpha-actinins are calcium-sensitive actin-binding proteins. Nature 294, 565–567 (1981).

    CAS  PubMed  Google Scholar 

  51. Dubreuil, R.R. et al. Structure, calmodulin-binding, and calcium-binding properties of recombinant alpha spectrin polypeptides. J. biol. Chem. 266, 7189–93 (1991).

    CAS  PubMed  Google Scholar 

  52. Lundberg, S., Lehto, V.-P. & Backman, L. Characterization of calcium binding to spectrins. Biochemistry 31, 5665–5671 (1992).

    CAS  PubMed  Google Scholar 

  53. Milner, R.E., Busaan, J. & Michalak, M. Isolation and characterization and characterization of different C-terminal fragments of dystrophin expressed in Escherichia coli. Biochem. J. 288, 1037–1044 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Khurana, T.S., Hoffman, E.P. & Kunkel, L.M. Identification of a chromosome 6-encoded dystrophin-related protein. J. biol. Chem. 265, 16717–16720 (1990).

    CAS  PubMed  Google Scholar 

  55. Love, D.R. et al. An autosomal transcript in skeletal muscle with homology to dystrophin. Nature 339, 55–58 (1989).

    CAS  PubMed  Google Scholar 

  56. Tinsley, J.M. et al. Primary structure of dystrophin-related protein. Nature 360, 591–593 (1992).

    CAS  PubMed  Google Scholar 

  57. Cullen, M.J., Walsh, J., Nicholson, L.V. & Harris, J.B. Ultrastructural localization of dystrophin in human muscle by using gold immunolabelling. Proc. R. Soc. London B: 240, 197–210 (1990).

    CAS  Google Scholar 

  58. Ervasti, J.M. & Campbell, K.P. Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–1131 (1991).

    CAS  PubMed  Google Scholar 

  59. Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    CAS  PubMed  Google Scholar 

  60. Suzuki, A., Yoshida, M., Yamamoto, H. & Ozawa, E. Glycoprotein-binding site of dystrophin is confined to the cysteine-rich domain and the first half of the carboxy-terminal domain. FEBS Lett. 308, 154–160 (1992).

    CAS  PubMed  Google Scholar 

  61. van Ommen, G. et al. A physical map of 4 million bp around the Duchenne muscular dystrophy gene on the human X-chromosome. Cell 47, 499–504 (1986).

    CAS  PubMed  Google Scholar 

  62. Burmeister, M. & Lehrach, H. Long-range restriction map around the Duchenne muscular dystrophy gene. Nature 324, 582–585 (1986).

    CAS  PubMed  Google Scholar 

  63. van Ommen, G. et al. Long-range genomic map of the Duchenne muscular dystrophy (DMD) gene: isolation and use of J66 (DXS268), a distal intragenic marker. Genomics 1, 329–336 (1987).

    CAS  PubMed  Google Scholar 

  64. Coffey, A.J. et al. Construction of a 2.6–Mb contig in yeast artificial chromosomes spanning the human dystrophin gene using an STS–based approach. Genomics 12, 474–484 (1992).

    CAS  PubMed  Google Scholar 

  65. Roberts, R.G., Coffey, A.J., Bobrow, M. & Bentley, D.R. Determination of the exon structure of the distal portion of the dystrophin gene by vectorette PCR. Genomics 13, 942–950 (1992).

    CAS  PubMed  Google Scholar 

  66. den Dunnen, J. et al. Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications. Am. J. hum. Genet. 45, 835–847 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Forrest, S.M. et al. Preferential deletion of exons in Duchenne and Becker muscular dystrophies. Nature 329, 638–640 (1987).

    CAS  PubMed  Google Scholar 

  68. Forrest, S.M. et al. Further studies of gene deletions that cause Duchenne and Becker muscular dystrophies. Genomics 2, 109–114 (1988).

    CAS  PubMed  Google Scholar 

  69. Angelini, C. et al. Enormous dystrophin in a patient with Becker muscular dystrophy. Neurology 40, 808–812 (1990).

    CAS  PubMed  Google Scholar 

  70. Hu, X.Y., Ray, P.N., Murphy, E.G., Thompson, M.W. & Worton, R.G. Duplicational mutation at the Duchenne muscular dystrophy locus: its frequency, distribution, origin, and phenotypegenotype correlation. Am. J. hum. Genet. 46, 682–695 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Koenig, M. et al. The molecular basis for Duchenne versus Becker muscular dystrophy: Correlation of severity with type of deletion. Am. J. hum Genet. 45, 498–506 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gillard, E.F. et al. Molecular and phenotypic analysis of patients with deletions within the deletion-rich region of the Duchenne muscular dystrophy (DMD) gene. Am. J. hum. Genet. 45, 507–520 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Beggs, A.H. et al. Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies. Am. J. hum. Genet. 49, 54–67 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Malhotra, S.B. et al. Frame-shift deletions in patients with Duchenne and Becker muscular dystrophy. Science 242, 755–759 (1988).

    CAS  PubMed  Google Scholar 

  75. Baumbach, L.L. et al. Molecular and clinical correlations of deletions leading to Duchenne and Becker muscular dystrophies. Neurology 39, 465–474 (1989).

    CAS  PubMed  Google Scholar 

  76. Chelly, J. et al. Effect of dystrophin gene deletions on mRNA levels and processing in Duchenne and Becker muscular dystrophies. Cell 63, 1239–1248 (1990).

    CAS  PubMed  Google Scholar 

  77. Gangopadhyay, S.B. et al. Dystrophin in frameshift deletion patients with Becker muscular dystrophy. Am. J. hum. Genet. 51, 562–570 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Beggs, A.H. et al. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy. Proc. natn. Acad. Sci. U.S.A. 89, 623–627 (1992).

    CAS  Google Scholar 

  79. Bulman, D.E. et al. Differentiation of Duchenne and Becker muscular dystrophy phenotypes with amino- and carboxy-terminal antisera specific for dystrophin. Am. J. hum. Genet. 48, 295–304 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hoffman, E.P. et al. Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne's or Seeker's muscular dystrophy. New Engl. J. Med. 318, 1363–1368 (1988).

    CAS  PubMed  Google Scholar 

  81. Hoffman, E.P. & Kunkel, L.M. Dystrophin abnormalities in Duchenne/Becker muscular dystrophy. Neuron 2, 1019–1029 (1989).

    CAS  PubMed  Google Scholar 

  82. Hoffman, E.P. et al. Improved diagnosis of Becker muscular dystrophy by dystrophin testing. Neurology 39, 1011–1017 (1989).

    CAS  PubMed  Google Scholar 

  83. Bulman, D.E., Gangopadhyay, S.B., Bebchuck, K.G., Worton, R.G. & Ray, P.N. Point mutation in the human dystrophin gene: Identification through western blot analysis. Genomics 10, 457–460 (1991).

    CAS  PubMed  Google Scholar 

  84. Emery, A.E.H. Clinical Features in Duchenne Muscular Dystrophy 2 Oxford Monographs on Medical Genetics (Motulsky, A. G. et al.) 25–42 (Oxford University Press, New York, 1987).

    Google Scholar 

  85. Arikawa, E. et al. The frequency of patients with dystrophin abnormalities in a limb-girdle patient population. Neurology 41, 1491–1496 (1991).

    CAS  PubMed  Google Scholar 

  86. Gospe, S.J. et al. Familial X-linked myalgia and cramps: a nonprogressive myopathy associated with a deletion in the dystrophin gene. Neurology 39, 1277–12780 (1989).

    PubMed  Google Scholar 

  87. Sakata, C. et al. A case of Becker muscular dystrophy presenting cardiac failure as an initial symptom. Rinsho Shinkeigaku, Clin. Neurol. 30, 210–213 (1990).

    CAS  Google Scholar 

  88. Sunohara, N. et al. Quadriceps myopathy: forme fruste of Becker muscular dystrophy. Ann. Neurol. 28, 634–639 (1990).

    CAS  PubMed  Google Scholar 

  89. Hoffman, E.P., Knudson, C.M., Campbell, K.P. & Kunkel, L.M. Subcellular fractionation of dystrophin to the triads of skeletal muscle. Nature 330, 754–758 (1987).

    CAS  PubMed  Google Scholar 

  90. Campbell, K.P. & Kahl, S.D. Association of dystrophin and an integral membrane glycoprotein. Nature 338, 259–262 (1989).

    CAS  PubMed  Google Scholar 

  91. Michalak, M. & Zubrzycka-Gaarn, E.E. Identification of dystrophin in cardiac sarcolemmal vesicles. Biochem. Biophys. Res. Commun. 169, 565–570 (1990).

    CAS  PubMed  Google Scholar 

  92. Zubrzycka-Gaarn, E.E. et al. Dystrophin is tightly associated with the sarcolemma of mammalian skeletal muscle fibers. Exp. cell Res. 192, 278–288 (1991).

    CAS  PubMed  Google Scholar 

  93. Ohlendieck, K., Ervasti, J.M., Snook, J.B. & Campbell, K.P. Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma. J. cell Biol. 112, 135–148 (1991).

    CAS  PubMed  Google Scholar 

  94. Ohlendieck, K. & Campbell, K.P. Dystrophin constitutes 5% of membrane cytoskeleton in skeletal muscle. FEBS Lett. 283, 230–234 (1991).

    CAS  PubMed  Google Scholar 

  95. Watkins, S.C., Hoffman, E.P., Slayter, H.S. & Kunkel, L.M. Immunoelectron microscopic localization of dystrophin in myofibres. Nature 333, 863–866 (1988).

    CAS  PubMed  Google Scholar 

  96. Carpenter, S. et al. Dystrophin is localized to the plasma membrane of human skeletal muscle fibers by electron-microscopic cytochemical study. Muscle Nerve 13, 376–380 (1990).

    CAS  PubMed  Google Scholar 

  97. Wakayama, Y. et al. Dystrophin immunostaining and freeze-fracture studies of muscles of patients with early stage amyotrophic lateral sclerosis and Duchenne muscular dystrophy. J. neurol. Sci. 91, 191–205 (1989).

    CAS  PubMed  Google Scholar 

  98. Wakayama, Y. & Shibuya, S. Antibody-decorated dystrophin molecule of murine skeletal myofiber as seen by freeze-etching electron microscopy. J. Electr. Micros. 40, 143–5 (1991).

    CAS  Google Scholar 

  99. Cullen, M.J. et al. Immunogold labelling of dystrophin in human muscle, using an antibody to the last 17 amino acids of the C-terminus. Neuromus. Dis. 1, 113–119 (1991).

    CAS  Google Scholar 

  100. Ervasti, J.M., Ohlendieck, K., Kahl, S.D., Gaver, M.G. & Campbell, K.P. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345, 315–319 (1990).

    CAS  PubMed  Google Scholar 

  101. Yoshida, M. & Ozawa, E. Glycoprotein complex anchoring dystrophin to sarcolemma. J. Biochem. 108, 748–752 (1990).

    CAS  PubMed  Google Scholar 

  102. Ervasti, J.M., Kahl, S.D. & Campbell, K.P. Purification of dystrophin from skeletal muscle. J. biol. Chem. 266, 9161–9165 (1991).

    CAS  PubMed  Google Scholar 

  103. Ohlendieck, K. & Campbell, K.P. Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice. J. cell Biol. 115, 1685–1694 (1991).

    CAS  PubMed  Google Scholar 

  104. Hoffman, E.P., Arahata, K., Minetti, C., Bonilla, E. & Rowland, L.P. Dystrophinopathy in isolated cases of myopathy in females. Neurology 42, 967–975 (1992).

    CAS  PubMed  Google Scholar 

  105. Matsumura, K. et al. Deficiency of the 50K dystrophin-associated glycoprotein in severe childhood autosomal recessive muscular dystrophy. Nature 359, 320–322 (1992).

    CAS  PubMed  Google Scholar 

  106. Ben Hamida, M., Fardeau, M. & Attia, N. Severe childhood muscular dystrophy affecting both sexes and frequent in Tunisia. Muscle Nerve 6, 469–840 (1983).

    CAS  PubMed  Google Scholar 

  107. Ben Jelloun-Dellagi, S. et al. Presence of normal dystrophin in Tunisian severe childhood autosomal recessive muscular dystrophy. Neurology 40, 1903 (1990).

    CAS  PubMed  Google Scholar 

  108. Butler, M.H. et al. Association of the Mr 58,000 postsynaptic protein of electric tissue with Torpedo dystrophin and the Mr 87,000 postsynaptic protein. J. biol. Chem. 267, 6213–6218 (1992).

    CAS  PubMed  Google Scholar 

  109. Murayama, T. et al. Molecular shape of dystrophin purified from rabbit skeletal muscle myofibrils. Proc. Jap. Acad. 66, 96–99 (1990).

    CAS  Google Scholar 

  110. Pons, F. et al. Isolated dystrophin molecules as seen by electron microscopy. Proc. natn. Acad. Sci. U.S.A. 87, 7851–7855 (1990).

    CAS  Google Scholar 

  111. Sato, O., Nonomura, Y., Kimura, S. & Maruyama, K. Molecular shape of dystrophin. J. Biochem. (Tokyo) 112, 631–636 (1992).

    CAS  PubMed  Google Scholar 

  112. Bennett, V. Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm (erratum Physiol. Rev. 71(1) 1991) Physiol. Rev. 70, 1029–1065 (1990).

    CAS  PubMed  Google Scholar 

  113. Cohen, C.M., Tyler, J.M. & Branton, D. Spectrin-actin associations studied by electron microscopy of shadowed preparations. Cell 21, 875–883 (1980).

    CAS  PubMed  Google Scholar 

  114. Morrow, J.S. et al. Identification of functional domains of human erythrocyte spectrin. Proc. natn. Acad. Sci. U.S.A. 77, 6592–6596 (1980).

    CAS  Google Scholar 

  115. Karinch, A.M., Zimmer, W.E. & Goodman, S.R. The identification and sequence of the actin-binding domain of human red blood cell beta-spectrin. J. biol. Chem. 265, 11833–11840 (1990).

    CAS  PubMed  Google Scholar 

  116. Byers, T.J. & Branton, D. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc. natn. Acad. Sci. U.S.A. 82, 6153–6157 (1985).

    CAS  Google Scholar 

  117. Luna, E.J. & Hitt, A.L. Cytoskeleton-plasma interactions. Science 258, 955–964 (1992).

    CAS  PubMed  Google Scholar 

  118. Craig, S.W. & Pardo, J.V. Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motil. 3, 449–62 (1983).

    CAS  PubMed  Google Scholar 

  119. Pardo, J.V., Siliciano, J.D. & Craig, S.W. A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc. natn. Acad. Sci. U.S.A. 80, 1008–1012 (1983).

    CAS  Google Scholar 

  120. Pardo, J.V., Siliciano, J.D. & Craig, S.W. Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J. cell Biol. 97, 1081–1088 (1983).

    CAS  PubMed  Google Scholar 

  121. Nelson, W.J. & Lazarides, E. Goblin (ankyrin) in striated muscle: identification of the potential membrane receptor for erythroid spectrin in muscle cells. Proc. natn. Acad. Sci. U.S.A. 81, 3292–3296 (1984).

    CAS  Google Scholar 

  122. Shear, C.R. & Bloch, R.J. Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures. J. cell Biol. 101, 240–256 (1985).

    CAS  PubMed  Google Scholar 

  123. Terracio, L., Gullberg, D., Rubin, K., Craig, S. & Borg, T.K. Expression of collagen adhesion proteins and their association with the cytoskeleton in cardiac myocytes. Anat. Rec. 223, 62–71 (1989).

    CAS  PubMed  Google Scholar 

  124. Terracio, L. et al. Distribution of vinculin in the Z-disk of striated muscle: analysis by laser scanning confocal microscopy. J. cell. Physiol. 145, 78–87 (1990).

    CAS  PubMed  Google Scholar 

  125. Mokri, B. & Engel, A.G. Duchenne dystrophy: electron microscopic findings point to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurology 25, 1111–1120 (1975).

    CAS  PubMed  Google Scholar 

  126. Schmalbruch, H. Segmental fiber breakdown and defects of the plasmalemma in diseased human muscles. Acta Neuropath. 33, 129–141 (1975).

    CAS  PubMed  Google Scholar 

  127. Wrogemann, K. & Pena, S.D.J. Mitochondrial calcium overload: ageneral mechanism for cell-necrosis in muscle diseases. Lancet 1, 672–674 (1976).

    CAS  PubMed  Google Scholar 

  128. Bodensteiner, J.B. & Engel, A.G. Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: a study of 567,000 muscle fibers in 114 biopsies. Neurology 28, 439–446 (1978).

    CAS  PubMed  Google Scholar 

  129. Arahata, K. & Sugita, H. Dystrophin and the membrane hypothesis of muscular dystrophy. Tr. Pharm. Sci. 10, 437–439 (1989).

    CAS  Google Scholar 

  130. Turner, P.R., Westwood, T., Regen, C.M. & Steinhardt, R.A. Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335, 735–738 (1988).

    CAS  PubMed  Google Scholar 

  131. MacLennan, P.A. & Edwards, R.H. Protein turnover is elevated in muscle of mdx mice in vivo. Biochem. J. 268, 795–797 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Fong, P.Y., Turner, P.R., Denetclaw, W.F. & Steinhardt, R.A. Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. Science 250, 673–676 (1990).

    CAS  PubMed  Google Scholar 

  133. Franco, A.J. & Lansman, J.B. Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344, 670–673 (1990).

    CAS  PubMed  Google Scholar 

  134. Menke, A. & Jockusch, H. Decreased osmotic stability of dystrophin-less muscle cells from the mdx mouse. Nature 349, 69–71 (1991).

    CAS  PubMed  Google Scholar 

  135. Spencer, M.J. & Tidball, J.G. Calpain concentration is elevated although net calcium-dependent proteolysis is supressed in dystrophin-deficient muscle. Exp. cell Res. 203, 107–114 (1992).

    CAS  PubMed  Google Scholar 

  136. Hutter, O.F. The membrane hypothesis of Duchenne muscular dystrophy: quest for functional evidence. J. Inherit. met. Dis. 15, 565–577 (1992).

    CAS  Google Scholar 

  137. Dickson, G. et al. Co-localization and molecular association of dystrophin with laminin at the surface of mouse and human myotubes. J. cell Sci. 103, 1223–1233 (1992).

    CAS  PubMed  Google Scholar 

  138. Klietsch, R. et al. Dystrophin-glycoprotein complex and laminin colocalize to the sarcolemma and transverse tubules of cardiac muscle. Circ. Res. 72, 349–360 (1993).

    CAS  PubMed  Google Scholar 

  139. Lakonishok, M., Muschler, J. & Horwitz, A.F. The alpha 5 beta 1 integrin associates with a dystrophin-containing lattice during muscle development. Dev. Biol. 152, 209–220 (1992).

    CAS  PubMed  Google Scholar 

  140. Sealock, R. et al. Localization of dystrophin relative to acetylcholine receptor domains in electric tissue and adult and cultured skeletal muscle. J. cell Biol. 113, 1133–1144 (1991).

    CAS  PubMed  Google Scholar 

  141. Chang, H.W., Bock, E. & Bonilla, E. Dystrophin in electric organ of Torpedo californica homologous to that in human muscle. J. biol. Chem. 264, 20831–20834 (1989).

    CAS  PubMed  Google Scholar 

  142. Jasmin, B.J. et al. Asymmetric distribution of dystrophin in developing and adult Torpedo marmorata electrocyte: evidence for its association with the acetylcholine receptor-rich membrane. Proc. natn. Acad. Sci. U.S.A. 87, 3938–3941 (1990).

    CAS  Google Scholar 

  143. Cartaud, A. et al. Localization of dystrophin and dystrophin-related protein at the electromotor synapse and neuromuscular junction in Torpedo marmorata. Neuroscience 48, 995–1003 (1992).

    CAS  PubMed  Google Scholar 

  144. Shimizu, T., Matsumura, K., Sunada, Y. & Mannen, T. Dense immunostainings on both neuromuscular and myotendinous junctions with an anti-dystrophin monoclonal antibody. Biomed. Res. 10, 405–409 (1989).

    CAS  Google Scholar 

  145. Zhao, J., Yoshioka, K., Miyatake, M. & Miike, T. Dystrophin and a dystrophin-related protein in intrafusal muscle fibers, and neuromuscular and myotendinous junctions. Acta Neuropath. 84, 141–146 (1992).

    CAS  PubMed  Google Scholar 

  146. Trotter, J.A., Eberhard, S. & Duchen, L.W. Structural domains of the muscle-tendon junction. 1. The internal lamina and the connecting domain. Anat. Rec. 207, 573–591 (1983).

    CAS  PubMed  Google Scholar 

  147. Tidball, J.G. The geometry of actin filament-membrane associations can modify adhesive strength of the myotendinous junction. Cell Motility 3, 439–447 (1983).

    CAS  PubMed  Google Scholar 

  148. Tidball, J.G. & Daniel, T.L. Myotendinous junctions of tonic muscle cells: Structure and loading. Cell Tis. Res. 245, 315–322 (1986).

    CAS  Google Scholar 

  149. Tidball, J.G. & Chan, M. Adhesive strength of single muscle cells to basement membrane at myotendinous junctions. J. Appl. Physiol. 67, 1063–1069 (1989).

    CAS  PubMed  Google Scholar 

  150. Tidball, J.G. & Law, D.J. Dystrophin is required for normal thin filament-membrane associations at myotendinous junctions. Am. J. Path. 138, 17–21 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kramarcy, N.R. & Sealock, R. Dystrophin as a focal adhesion protein. Collocalization with talin and the Mr 48,000 sarcolemmal protein in cultured Xenopus muscle. FEBS Lett. 274, 171–174 (1990).

    CAS  PubMed  Google Scholar 

  152. Nelson, W.J., Shore, E.M., Wang, A.Z. & Hammerton, R.W. Identification of a membrane-cytoskeletal complex containing the cell adhesion molecule uvomorulin (E-cadherin), ankyrin, and fodrin in Madin-Darby canine kidney epithelial cells. J. cell Biol. 110, 349–357 (1990).

    CAS  PubMed  Google Scholar 

  153. Peng, H.B. & Chen, Q. Induction of dystrophin localization in cultured Xenopus muscle cells by latex beads. J. Cell Sci. 103, 551–563 (1992).

    CAS  PubMed  Google Scholar 

  154. North, A.J. et al. Complementary distributions of vinculin and dystrophin define two distinct sarcolemma domains in smooth muscle. J. cell Biol. (in the press).

  155. Drenckhahn, D., Beckerle, M., Burridge, K. & Otto, J. Identification and subcellular location of talin in various cell types and tissues by means of vinculin overlay, immunoblotting and immunocytochemistry. Eur. J. cell Biol. 46, 513–522 (1988).

    CAS  PubMed  Google Scholar 

  156. Small, J.V. Geometry of actin-membrane attatchments in the smooth muscle cell: the localizations of vinculin and alpha-actinin. EMBO J. 4, 45–49 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Junquiera, L.C., Carniero, J. & Long, J.A. Muscle Tissue in Basic Histology 5 234–254 (Appleton-Century-Crofts, Norwalk, Connecticut, 1986).

    Google Scholar 

  158. Bies, R.D. et al. Expression and localization of dystrophin in human cardiac Purkinje fibers. Circulation 86, 147–153 (1992).

    CAS  PubMed  Google Scholar 

  159. Klamut, H.J. et al. Myogenic regulation of dystrophin gene expression. Br. Med. Bull. 45, 681–702 (1989).

    CAS  PubMed  Google Scholar 

  160. Barnea, E. et al. Specificity of expression of the muscle and brain dystrophin gene promoters in muscle and brain cells. Neuron 5, 881–888 (1990).

    CAS  PubMed  Google Scholar 

  161. Chelly, J. et al. Dystrophin gene transcribed from different promoters in neuronal and glial cells. Nature 344, 64–65 (1990).

    CAS  PubMed  Google Scholar 

  162. Boyce, F.M. et al. Dystrophin is transcribed in brain from a distant upstream promoter. Proc. natn. Acad. Sci. U.S.A. 88, 1276–1280 (1991).

    CAS  Google Scholar 

  163. Makover, A. et al. Brain-type and muscle-type promoters of the dystrophin gene differ greatly in structure. Neuromus. Dis. 1, 39–45 (1991).

    CAS  Google Scholar 

  164. Gorecki, D.C. et al. Expression of four alternative dystrophin transcripts in brain regions regulated by different promoters. Hum. molec. Genet. 1, 505–510 (1992).

    CAS  PubMed  Google Scholar 

  165. Lemaire, C., Heilig, R. & Mandel, J.L. Nucleotide sequence of chicken dystrophin cDNA. Nucl. Acids Res. 16, 11815–11816 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Feener, C.A., Koenig, M. & Kunkel, L.M. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature 338, 509–511 (1989).

    CAS  PubMed  Google Scholar 

  167. Bies, R.D. et al. Human and murine dystrophin mRNA transcripts are differentially expressed during skeletal muscle, heart, and brain development. Nucl. Acids Res. 20, 1725–1731 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Jung, D., Pons, F., Leger, J.J., Aunis, D. & Rendon, A. Dystrophin in central nervous system: a developmental, regional distribution and subcellular localization study. Neurosci. Lett. 124, 87–91 (1991).

    CAS  PubMed  Google Scholar 

  169. Emery, A.E.H. Central Nervous System in Duchenne Muscular Dystrophy 2. (eds Motulsky, A.G. et al.) 99–106 (Oxford University Press, New York, 1987).

    Google Scholar 

  170. Dubowitz, V. & Crome, L. The central nervous system in Duchenne muscular dystrophy. Brain 92, 805–808 (1969).

    CAS  PubMed  Google Scholar 

  171. Nudel, U. et al. Duchenne muscular dystrophy gene product is not identical in muscle and brain. Nature 337, 76–78 (1989).

    CAS  PubMed  Google Scholar 

  172. Chamberlain, J.S. et al. Expression of the murine Duchenne muscular dystrophy gene in muscle and brain. Science 239, 1416–1418 (1988).

    CAS  PubMed  Google Scholar 

  173. Lidov, H.G.W., Byers, T.J. & Kunkel, L.M. The distribution of 427 kD dystrophin in the murine CNS: an immunocytochemical study. Neuroscience (in the press).

  174. Bushby, K.M. Genetic and clinical correlations of Xp21 muscular dystrophy. J. Inherit. Metab. Dis. 15, 551–64 (1992).

    CAS  PubMed  Google Scholar 

  175. Fiez, J.A., Petersen, S.E., Cheney, M.K. & Raichle, M.E. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 1, 155–78 (1992).

    Google Scholar 

  176. Torelli, S. et al. Dystrophin immunoreactivity in normal and Duchenne human fetal neurons in culture. J. Neurosci. Res. 32, 116–125 (1992).

    CAS  PubMed  Google Scholar 

  177. Kim, T., Wu, K., Xu, J. & Black, I.B. Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne muscular dystrophy. Proc. natn. Acad. Sci. U.S.A. 89, 11642–11644 (1992).

    CAS  Google Scholar 

  178. Pillers, D.M. et al. Dystrophin expression in the human retina is required for normal function as defined by retinography. Nature Genet. (in the press).

  179. Khurana, T.S., Watkins, S.C. & Kunkel, L.M. The subcellular distribution of chromosome 6–encoded dystrophin related protein in the brain. J. cell Biol. 119, 357–366 (1992).

    CAS  PubMed  Google Scholar 

  180. Love, D.R. et al. Tissue distribution of the dystrophin-related gene product and expression in the mdx and dy mouse. Proc. natn. Acad. Sci. U.S.A. 88, 3243–3247 (1991).

    CAS  Google Scholar 

  181. Ohlendieck, K. et al. Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron 7, 499–508 (1991).

    CAS  PubMed  Google Scholar 

  182. Ishiura, S. et al. Antibody against the C-terminal portion of dystrophin crossreacts with the 400 kDa protein in the pia mater of dystrophin-deficient mdx mouse brain. J. Biochem. 107, 510–513 (1990).

    CAS  PubMed  Google Scholar 

  183. Khurana, T.S. et al. Immunolocalization and developmental expression of dystrophin related protein in skeletal muscle. Neuromus. Dis. 1, 185–194 (1991).

    CAS  Google Scholar 

  184. Matsumura, K. et al. Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360, 588–591 (1992).

    CAS  PubMed  Google Scholar 

  185. Burrow, K.L. et al. Dystrophin expression and somatic reversion in prednisone-treated and untreated Duchenne dystrophy. CIDD Study Group. Neurology 41, 661–666 (1991).

    CAS  PubMed  Google Scholar 

  186. Sklar, R.M. & Brown, R.J. Methylprednisolone increases dystrophin levels by inhibiting myotube death during myogenesis of normal human muscle in vitro. J. Neurol. Sci. 101, 73–81 (1991).

    CAS  PubMed  Google Scholar 

  187. Acsadi, G. et al. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352, 815–818 (1991).

    CAS  PubMed  Google Scholar 

  188. Ragot, T. et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361, 647–650 (1993).

    CAS  PubMed  Google Scholar 

  189. Partridge, T.A., Morgan, J.E., Coulton, G.R., Hoffman, E.P. & Kunkel, L.M. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337, 176–179 (1989).

    CAS  PubMed  Google Scholar 

  190. England, S.B. et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 343, 180–182 (1990).

    CAS  PubMed  Google Scholar 

  191. Chelly, J., Kaplan, J.C., Maire, P., Gautron, S. & Kahn, A. Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature 333, 858–860 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, A., Kunkel, L. The structural and functional diversity of dystrophin. Nat Genet 3, 283–291 (1993). https://doi.org/10.1038/ng0493-283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0493-283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing