Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus

Abstract

Type 1 diabetes or insulin-dependent diabetes mellitus (IDDM) is due to autoimmune destruction of pancreatic β-cells. Genetic susceptibility to IDDM is encoded by several loci, one of which (IDDM2) maps to a variable number of tandem repeats (VNTR) minisatellite, upstream of the insulin gene (INS)1–5. The short class I VNTR alleles (26–63 repeats) predispose to IDDM, while class III alleles (140–210 repeats) have a dominant protective effect1–6. We have reported that, in human adult4'6 and fetal7 pancreas in vivo, class III alleles are associated with marginally lower INS mRNA levels than class I, suggesting transcriptional effects of the VNTR. These may be related to type 1 diabetes pathogenesis, as insulin is the only known β-cell specific IDDM autoantigen. In search of a more plausible mechanism for the dominant effect of class III alleles, we analysed expression of insulin in human fetal thymus, a critical site for tolerance induction to self proteins. Insulin was detected in all thymus tissues examined and class III VNTR alleles were associated with 2- to 3-fold higher INS mRNA levels than class I. We therefore propose higher levels of thymic INS expression, facilitating immune tolerance induction, as a mechanism for the dominant protective effect of class III alleles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Julier, C. et al. lnsulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature 354, 155–159 (1991).

    Article  CAS  Google Scholar 

  2. Lucassen, A.M. et al. Susceptibility to insulin dependent diabetes mellitus maps to a 4.1-kb segment of DNA spanning the insulin gene and associated VNTR. Nature Genet. 4, 305–310 (1993).

    Article  CAS  Google Scholar 

  3. Owerbach, D. & Gabbay, K.H. Localization of a type I diabetes susceptibility locus to the variable tandem repeat region flanking the insulin gene. Diabetes 42, 1708–1714 (1993).

    Article  CAS  Google Scholar 

  4. Bennett, S.T. et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nature Genet. 9 284–292 (1995).

    Article  CAS  Google Scholar 

  5. Undlien, D.E. et al. Insulin gene region-encoded susceptibility to IDDM maps upstream of the insulin gene. Diabetes 44, 620–625 (1995).

    Article  CAS  Google Scholar 

  6. Bennett. ST et al. IDDM2-VNTR-encoded susceptibility to type 1 diabetes; dominant protection and parental transmission of alleles of the insulin gene-linked minisatellite locus. J. Autoimmun. 9, 415–421 (1996).

    Article  CAS  Google Scholar 

  7. Vafiadis, P. et al. Imprinted and genotype-specific expression of genes at the IDDM2 locus in pancreas and leucocytes. J. Autoimmun. 9, 397–403 (1996).

    Article  CAS  Google Scholar 

  8. Jolicoeur, C. Hanahan, D. & Smith, K.M. T-cell tolerance toward a transgenic beta-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc. Natl. Acad. ed. USA 91, 6707–711 (1994).

    Article  CAS  Google Scholar 

  9. Pugliese, A. et al. Transcription levels of human insulin in the thymus correlate with allelic variation at the IDDM2 1 diabetes.Nature Genet. 15, 293–297 (1997).

    Article  CAS  Google Scholar 

  10. Heath, W.R. et al. Autoimmune diabetes as a consequence of locally produced interleukin-2. Nature 359, 547–549 (1992).

    Article  CAS  Google Scholar 

  11. Miller, J.F. Morahan, G. & Allison, J. Extrathymic acquisition of tolerance by T lymphocytes. Cold Spring Harbor Symp. Quant. Biol. 54, 807–813 (1989).

    Article  CAS  Google Scholar 

  12. Giddings, S.J. King, C.D. Harman, K.W. Flood, J.F. & Carnaghi, L.R. Allele-specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nature Genet. 6, 310–313 (1994).

    Article  CAS  Google Scholar 

  13. Pugliese, A. Awdeh, Z.L. Alper, C.A. Jackson, R.A. & Eisenbarth, G.S. The paternally inherited insulin gene B allele (1, 428 Fokl site) confers protection from insulin-dependent diabetes in families. Autoimmun. 7, 687–694 (1994).

    Article  CAS  Google Scholar 

  14. Polychronakos, C. Kukuvitis, A. Giannoukakis, N. & Colle, E. Parental imprinting effect at the INS-IGF2 diabetes susceptibility locus. Diabetologia 38, 715–719 (1995).

    Article  CAS  Google Scholar 

  15. Bui, M.M. et al. Paternally transmitted IDDM2 influences diabetes susceptibility despite biallelic expression of the insulin gene in human pancreas. J. Autoimmun. 9, 97–103 (1996).

    Article  CAS  Google Scholar 

  16. Xu, Y. Goodyer, C.G. Deal, C. & Polychronakos, C. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem. Biophys. Res. Commun. 197 747–754 (1993).

    Article  CAS  Google Scholar 

  17. Smrzka, O.W. et al. Conservation of a maternal-specific methylation signal at the human IGF2R locus. Hum. Mol. Genet. 4, 1945–1952 (1995).

    Article  CAS  Google Scholar 

  18. Jinno, Y. et al. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nature Genet. 6, 305–309 (1994).

    Article  CAS  Google Scholar 

  19. Saoudi, A. Seddon, B. Heath, V. Fowell, D. & Mason, D. The physiological role of regulatory T cells in the prevention of autoimmunity the function of the thymus in the generation of the regulatory T cell subset. Immunol. Rev. 149, 195–216 (1996).

    Article  CAS  Google Scholar 

  20. Batanero, E. et al. The neural and neuro-endocrine component of the human thymus. II. Hormone immunoreactivity. Brain Behav. Immun. 6, 249–264 (1992).

    Article  CAS  Google Scholar 

  21. Antonia, S.J. Geiger, T. Miller, J. & Flavell, R.A. Mechanisms of immune tolerance induction through the thymic expression of a peripheral tissue-specific protein. Intl. Immunol. 7, 715–725 (1995).

    Article  CAS  Google Scholar 

  22. Rudy, G. et al. Similar peptides from two beta cell autoantigens, proinsulin and glutamic acid decarboxylase, stimulate T cells of individuals at risk for insulin-dependent diabetes. Mol. Med. 1, 625–633 (1995).

    Article  CAS  Google Scholar 

  23. Keilacker, H. Rjasanowski, I. Besch, W. & Kohnert, K.D. Autoantibodies to insulin and to proinsulin in type 1 diabetic patients and in at-risk probands differentiate only little between both antigens. Hormone Metab. Res. 27, 90–94 (1995).

    Article  CAS  Google Scholar 

  24. Griffin, A.C. Zhao, W. Wegmann, K.W. & Hickey, W.F. Experimental autoimmune insulitis. Induction by T lymphocytes specific for a peptide of proinsulin. Am. J. Path. 147, 845–857 (1995).

    CAS  PubMed  Google Scholar 

  25. Berg, H. Walter, M. Mauch, L. Seissler, J. & Northemann, W. Recombinant human preproinsulin. Expression, purification and reaction with insulin autoantibodies in sera from patients with insulin-dependent diabetes mellitus. J. Immunol. Meth. 164, 221–231 ( 1993).

    Article  CAS  Google Scholar 

  26. von Herrath, M.G. Dockter, J. Nerenberg, M. Gairin, J.E. & Oldstone, M.B. Thymic selection and adaptability of cytotoxic T lymphocyte responses in transgenic mice expressing a viral protein in the thymus. Exp. Med. 180, 1901–1910 (1994).

    Article  CAS  Google Scholar 

  27. Posselt, A.M. Barker, C.F. Friedman, A.L. & Naji, A. Prevention of autoimmune diabetes in the BB rat by intrathymic islet transplantation at birth. Science 256, 1321–1324 (1992).

    Article  CAS  Google Scholar 

  28. Ashton-Rickardt, P.G. et al. Evidence for a differential avidity model of T cell selection in the thymus. Cell 76, 651–663 (1994).

    Article  CAS  Google Scholar 

  29. Sebzda, E. et al. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 263, 1615–1618 (1994).

    Article  CAS  Google Scholar 

  30. Wegemann, D.R. Norbury-Glaser, M. & Daniel, D. Insulin-specific T cells are a predominant component of islet infiltrates in pre-diabetic NOD mice. Euro. J. Immunol. 24, 1853–1857 (1994).

    Article  Google Scholar 

  31. Atkinson, M.A. Maclaren, N.K. & Luchetta, R. Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapy. Diabetes 39, 933–937 (1990).

    Article  CAS  Google Scholar 

  32. Keller, R.J. Eisenbarth, G.S. & Jackson, R.A. Insulin prophylaxis in individuals at high risk of type I diabetes. Lancet 341, 927–928 (1993).

    Article  CAS  Google Scholar 

  33. Lucassen, A.M. et al. Regulation of insulin gene expression by the IDDM associated, insulin locus haplotype. Hum. Molec. Genet. 4, 501–506 (1995).

    Article  CAS  Google Scholar 

  34. Owerbach, D. & Gabbay, K.H. The search for IDDM susceptibility genes. Diabetes 45, 544–551 (1996).

    Article  CAS  Google Scholar 

  35. Kennedy, G. German, M.S. & Rutter, W.J. The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nature Genet. 9, 293–298 (1995).

    Article  CAS  Google Scholar 

  36. McGinnis, R.E. & Spielman, R.S. Insulin gene 5′ flanking polymorphism. Diabetes 44, 1296–1302 ( 1995).

    Article  CAS  Google Scholar 

  37. Denny, P. et al. Mapping of the Insulin-Dependent Diabetes locus, Idd3, to a 0.35 cM interval containing the Interleukin-2 gene. Diabetes (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vafiadis, P., Bennett, S., Todd, J. et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 15, 289–292 (1997). https://doi.org/10.1038/ng0397-289

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0397-289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing