Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I

An Erratum to this article was published on 01 April 1996

Abstract

Current strategies for hepatic gene therapy are either quantitatively inefficient or suffer from lack of permanent gene expression. We have utilized an animal model of hereditary tyrosinaemia type I (HT1), a recessive liver disease caused by deficiency of fumarylacetoacetate hydrolase (FAH), to determine whether in vivo selection of corrected hepatocytes could improve the efficiency of liver gene transfer. As few as 1,000 transplanted wild-type hepatocytes were able to repopulate mutant liver, demonstrating their strong competitive growth advantage. Mutant hepatocytes corrected in situ by retroviral gene transfer were also positively selected. In mutant animals treated by multiple retrovirus injections >90% of hepatocytes became FAH positive and liver function was restored to normal. Our results demonstrate that in vivo selection is a useful strategy for hepatic gene therapy and may lead to effective treatment of human HT1 by retroviral gene transfer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Arias, I.M. The Liver — Biology and Pathobiology (Raven Press, New York, 1994).

  2. Scriver, C.R., Beaudet, A.L., Sly, W. & Valle, D. The Metabolic Basis of Inherited Disease (MacGraw-Hill, NewYork 1994).

    Google Scholar 

  3. Norwich, A.L. Inherited hepatic enzyme defects as candidates for liver-directed gene therapy. Curr. Topics Microbiol. Immun. 168, 185–200 (1991).

    Google Scholar 

  4. Grossman, M. & Wilson, J.M. Retroviruses: delivery vehicle to the liver. Curr. Opin. Genet Dev. 3, 110–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Li, Q., Kay, M.A., Finegold, M., Stratford-Perricaudet, L.D. & Woo, S.L. Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum. Gene Ther. 4, 403–409 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, Y. et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindblad, B., Lindstedt, S. & Steen, G. On the enzymic defects in hereditary tyrosinemia. Proc. Natl. Acad. Sci. USA 74, 4641–4645 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mitchell, G.A., Lambert, M. & Tanguay, R.M. in The Metabolic Basis of Inherited Disease. (eds Scriver, C.R., Beaudet, A.L., Sly, W. & Valle, D.) 1077–1106 (MacGraw-Hill, New York, 1994).

    Google Scholar 

  9. Grompe, M. et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 7, 2298–2307 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Klebig, M.L., Russell, L.B. & Rinchik, E.M. Murine fumarylacetoacetate hydrolase (Fah) gene is disrupted by a neonatally lethal albino deletion that defines the hepatocyte-specific developmental regulation 1 (hsdr–1) locus. Proc. Natl. Acad. Sci. USA 89, 1363–1367 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ruppert, S. et al. Deficiency of an enzyme of tyrosine metabolism underlies altered gene expression in newborn liver of lethal albino mice. Genes Dev. 6, 1430–1443 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Gluecksohn-Waelsch, S. Genetic control of morphogenetic and biochemical differentiation: lethal albino deletions in the mouse. Cell. 16, 225–237 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. Ruppert, S. et al. Two genetically defined trans-acting loci coordinately regulate overlapping sets of liver-specific genes. Cell 61, 895–904 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Lindstedt, S., Holme, E., Lock, E.A., Hjalmarson, O. & Strandvik, B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340, 813–817 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Grompe, M. et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nature Genet. 10, 453–460 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Bain, M.D. et al. Dietary treatment eliminates succinylacetone from the urine of a patient with tyrosinemia type I. Eur. J. Pediatr. 149, 637–639 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Paradis, K. et al. Liver transplantation for hereditary tyrosinemia: the Quebec experience. Am. J. Hum. Genet. 47, 338–342 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kvittingen, E.A., Rootwelt, H., Brandtzaeg, P., Bergan, A. & Berger, R. Hereditary tyrosinemia type I. Self-induced correction of the fumarylacetoacetase defect. J. Clin. Invest. 91, 1816–1821 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kvittingen, E.A., Rootwelt, H., Berger, R. & Brandtzaeg, R. Self-induced correction of the genetic defect in tyrosinemia type I. J. Clin. Invest. 94, 1657–1661 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sandgren, E.P. et al. Complete hepatic regeneration after somatic deletion of an alburnin-plasminogen activator transgene. Cell 66, 245–256 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Rhim, J.A., Sandgren, E.R., Degen, J.L. & Brinster, R.L. Replacement of disease mouse liver by hepatic cell transplantation. Science 263, 1149–1152 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Rhim, J.A., Sandgren, E.R., Palmiter, R.D. & Brinster, R.L. Complete reconstitution of mouse liver with xenogeneic hepatocytes. Proc. Natl. Acad. Sci. USA 92, 4942–4946 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kay, M.A. et al. Expression of human alpha 1-antitrypsin in dogs after autologous transplantation of retroviral transduced hepatocytes. Proc. Natl. Acad. Sci. USA 89, 89–93 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grossman, M. et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolemia. Nature Genet. 6, 335–341 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Chowdhury, J.R. et al. Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits. Science. 254, 1802–1805 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Kay, M.A. et al. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. Science 262, 117–119 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Hirschhorn, R., Yang, D.R., Israni, A., Huie, M.L. & Ownby, D.R. Somatic mosaicism for a newly identified splice-site mutation in a patient with adenosine deaminase-deficient immunodeficiency and spontaneous clinical recovery. Am. J. Hum. Genet. 56, 59–68 (1994).

    Google Scholar 

  28. Russo, P. & O'Regan, S. Visceral pathology of hereditary tyrosinemia type I Am. J. Hum. Genet. 47, 317–324 (1990).

    CAS  PubMed  Google Scholar 

  29. Gerber, M.A. & Thung, S.N. in The role of cell types in hepatocarcinogenesis. (ed. Sirica, A.E.) 209–226 (CRC Press, Boca Raton, 1992).

    Google Scholar 

  30. Fausto, N., In The Liver — Biology and Pathobiology. (ed. Arias, I.M.) 1501–1518 (Raven Press, New York, 1994).

    Google Scholar 

  31. Becker, A.F., McCulloch, E.A. & Till, J.E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452–455 (1963).

    Article  CAS  PubMed  Google Scholar 

  32. Lemischka, I.R., Raulet, D.H. & Mulligan, R.C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Cepko, C.L., Ryder, E.F., Austin, C.R., Walsh, C. & Fekete, D.M. Lineage analysis using retrovirus vectors. Mefn. Enzym. 225, 933–960 (1993).

    CAS  Google Scholar 

  34. Grompe, M., Jones, S.N., Loulseged, H. & Caskey, C.T. Retroviral-mediated gene transfer of human ornithine transcarbamylase into primary hepatocytes of spf and spf-ash mice. Hum. Gene Ther. 3, 35–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Ponder, K.R. et al. Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc. Natl. Acad. Sci. USA 88, 1217–1221 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Phaneuf, D. et al. Cloning and expression of the cDNA encoding human fumarylacetoacetae hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15. Am. J. Hum. Genet. 48, 525–535 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McLachlin, J.R., Mittereder, N., Daucher, M.B., Kadan, M. & Eglitis, M.A. Factors affecting retroviral vector function and structural integrity. Virology 195, 1–5 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Markowitz, D., Goff, S. & Bank, A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62, 1120–1124 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Markowitz, D., Goff, S. & Bank, A. Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167, 400–406 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Vrancken Peeters, M.J., Lieber, A., Perkins, J. & Kay, M.A. Method for multiple portal vein infusions in mice: quantitation of adenovirus-mediated hepatic gene transfer. Biotechniques (in the press).

  41. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Sambrook, J., Fritsch, E.R. & Maniatis, T., Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  44. Gubbay, J. et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245–250 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Davis, R.L., Weintraub, H. & Lassar, A.B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. Grompe, M. & al-Dhalimy, M. Nucleotide sequence of a cDNA encoding murine fumarylacetoacetate hydrolase. Biochem. Med. Metab. Biol. 48, 26–31 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Grenier, A. & Lescault, A., Methods of Enzymatic Analysis. (ed. Bergmeyer, H.) 79 (VCH Verlagsgesellschaft, Weinheim, F.R. Germany, 1985).

    Google Scholar 

  48. Knox, W.E. & Edwards, S.W. Enzymes involved in conversion of tyrosine to acetoacetate. Meth. Enzym. 2, 287–300 (1955).

    Article  CAS  Google Scholar 

  49. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  50. Tanguay, R.M. et al. Different molecular basis for fumarylacetoacetate hydrolase deficiency in the two clinical forms of hereditary tyrosinemia (type I). Am. J. Hum. Genet. 47, 308–316 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Labelle, Y.,, Puymirat, J. & Tanguay, R.M. Localization of cells in the rat brain expressing fumarylacetoacetate hydrolase, the deficient enzyme in hereditary tyrosinemia type 1. Biochim. Biophys. Acta. 1180, 250–256 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Overturf, K., Al-Dhalimy, M., Tanguay, R. et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet 12, 266–273 (1996). https://doi.org/10.1038/ng0396-266

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0396-266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing