Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mosaic and polymorphic imprinting of the WT1 gene in humans

Abstract

We have examined the imprinting of the Wilms' tumour suppressor gene (WT1) in human tissues. We confirm that WT1 is biallelically expressed in the kidney, however, in five of nine preterm placentae WT1 was expressed largely or exclusively from the maternal allele. Monoallelic expression of WT1 was also found in two fetal brains. These data demonstrate that WT1 can undergo tissue specific imprinting. Furthermore, because monoallelic expression of WT1 was not found in all placentae examined, WT1 imprinting may be genetically polymorphic within the human population.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hall, J.G. Genomic imprinting: Review and relevance to human diseases. Am. J. hum. Genet. 46, 857–873 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature 362, 749–751 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Wagstaff, J. et al. Maternal but not paternal transmission of 15q11–13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genet. 1, 291–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Özçelik, T. et al. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genet. 2, 265–269 (1992).

    Article  PubMed  Google Scholar 

  6. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Ohlsson, R. et al. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nature Genet. 4, 94–97 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Giannoukakis, N., Deal, C., Paquette, J., Goodyer, C.G. & Polychronakos, C. Parental genomic imprinting of the human IGF2 gene. Nature Genet. 4, 98–101 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Barlow, D.P., Stöger, R., Herrmann, B.G., Saito, K. & Sohweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Drummond, I.A. et al. Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 257, 674–678 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Haig, D. & Graham, C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64, 1045–1046 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Pelletier, J. et al. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67, 437–447 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Bruening, W. et al. Germline intronic and exonic mutations in the Wilms' tumour gene (WT1) affecting urogenital development. Nature Genet. 1, 144–148 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Little, M.H. et al. Evidence that WT1 mutations in Denys-Drash syndrome patients may act in adominant-negative fashion. Hum. molec. Genet. 2, 259–264 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Van Heyningen, V. & Hastie, N.D. Wilms' tumour: reconciling genetics and biology. Trends Genet. 8, 16–21 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Riccardi, V.M. et al. The aniridia-Wilms tumor association: The critical role of chromosome band 11p13. Cancer Genet. Cytogenet. 2, 131–137 (1980).

    Article  Google Scholar 

  17. Riccardi, V.M. et al. Wilms tumor with aniridia/iris dysplasia and apparently normal chromosomes. J. Pediatr. 100, 574–577 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Jadresic, L. et al. Clinicopathologic review of twelve children with nephropathy, Wilms tumor, and genital abnormalities (Drash syndrome). J. Pediatr. 117, 717–725 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Y., Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet. 1, 40–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Little, M.H. et al. Equivalent expression of paternally and maternally inherited WT1 alleles in normal fetal tissue and Wilms' tumours. Oncogens 7, 635–641 (1992).

    CAS  Google Scholar 

  21. Gessler, M., König, A. & Bruns, G.A.P. The genomic organization and expression of the WT1 gene. Genomics 12, 807–813 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Hoban, P.R. & Kelsey, A.M. HinfI polymorphism within the 3′ untranslated region of the candidate Wilms tumour gene. Nucl. Acids Res. 19, 1164 (1990).

    Article  Google Scholar 

  23. Barlow, D.P. Methylation and imprinting: From host defense to gene regulation? Science 260, 309–310 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Sapienza, C. Genome imprinting, cellular mosaicism and carcinogenesis. Molec. Carcinog. 3, 118–121 (1990).

    Article  CAS  Google Scholar 

  25. Weksberg, R., Shen, D.R., Fei, Y.L., Song, Q.L. & Squire, J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Biedemann syndrome. Nature Genet. 5, 143–149 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Ogawa, O. et al. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms' tumour and gigantism. Nature Genet. 5, 408–412 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Huff, V., Meadows, A., Riccardi, V.M., Strong, L.C., Saunders, G.F. Parental origin of de novo constitutional deletions of chromosomal band 11p13. Am. J. hum. Genet. 47, 155–160 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kreidberg, J.A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Hill, R.E. et al. Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jinno, Y., Yun, K., Nishiwaki, K. et al. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nat Genet 6, 305–309 (1994). https://doi.org/10.1038/ng0394-305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0394-305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing