Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A de novo pathological point mutation at the 21–hydroxylase locus: implications for gene conversion in the human genome

A Correction to this article was published on 01 May 1993

Abstract

More than two hundred characterized 21–hydroxylase deficiency alleles appear to result exclusively from sequence exchanges involving the 21–hydroxylase gene (CYP21B) and a closely related pseudogene (CYP21A). Gene conversion–like events have also been reported in many other human gene clusters, but in the absence of a de novo mutation, the alternative explanation of a multiple recombination is possible. We now report a de novo pathological mutation at the 21–hydroxylase locus. DNA sequence analysis suggests that the mutation arose by a microconversion event involving exchange of up to 390 nucleotides between maternal CYP21A and CYP21B genes. This putative de novo gene conversion event appears to be the first characterized in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gitelman, S.E., Bristow, J. & Miller, W.L. Mechanism and consequences of the duplication of the human C4/P450c21/gene X locus. Molec. cell. Biol. 12, 2124–2134 (1992).

    Article  CAS  Google Scholar 

  2. Strachan, T. Molecular genetics of congenital adrenal hyperplasia. Trends endocrin. Metab. 1, 68–72 (1989).

    Article  CAS  Google Scholar 

  3. Strachan, T. & White, P.C. Molecular pathology of steroid 21-hydroxylase deficiency. J. Ster. Biochem. molec. Biol. 40, 537–543 (1991).

    Article  CAS  Google Scholar 

  4. Collier, S. et al. Pulsed field gel electrophoresis identifies a high degree of variability in the number of tandem 21-hydroxylase and complement C4 repeats in 21-hydroxylase deficiency haplotypes. EMBO J. 8, 1393–1402 (1989).

    Article  CAS  Google Scholar 

  5. Sinnott, P. et al. Genesis by meiotic unequal crossover of a de novo deletion that contributes to steroid 21-hydroxylase deficiency. Proc. natn. Acad. Sci. U.S.A. 87, 2107–2111 (1990).

    Article  CAS  Google Scholar 

  6. Sinnott, P.J., Dyer, P.A., Price, D.A., Harris, R. & Strachan, T. 21-hydroxylase deficiency families with HLA-identical affected and unaffected sibs. J. med. Genet. 26, 10–17 (1989).

    Article  CAS  Google Scholar 

  7. Collier, S., Tassabehji, M. & Strachan, T. A method for specific amplification and PCR sequencing of individual members of multigene families: application to the study of steroid 21-hydroxylase deficiency. PCR Meth. Applic. 1, 181–186 (1992).

    Article  CAS  Google Scholar 

  8. Amor, M., Parker, K.L., Globerman, H., New, M.I. & White, P.C. Mutation in the CYP21B gene (lle-172→Asn) causes steroid 21 -hydroxylase deficiency. Proc. natn. Acad. Sci. U.S.A. 85, 1600–1604 (1988).

    Article  CAS  Google Scholar 

  9. Chiou, S.-H., Hu, M.-C. & Chung, B.-C. A missense mutation at lle172→Asn or Arg356→ Trp causes steroid 21-hydroxylase deficiency. J. biol. Chem. 265, 3549–3552 (1990).

    CAS  PubMed  Google Scholar 

  10. Tusie-Luna, M.-T., Traktman, P. & White, P.C. Determination of functional effects of mutations in the 21-hydroxylase gene (CYP21) using recombinant vaccinia virus. J. biol. Chem. 34, 20916–20922 (1990).

    Google Scholar 

  11. Kourilsky, P. Molecular mechanisms for gene conversion in higher cells. Trends Genet. 2, 60–63 (1986).

    Article  CAS  Google Scholar 

  12. Wysocki, L.J. & Gefter, M.L. Gene conversion and the generation of antibody diversity. Ann. Rev. Biochem. 58, 509–531 (1989).

    Article  CAS  Google Scholar 

  13. He, G.-S. & Grabowski, G.A. Gaucher's disease: a G+1 → A+1 IVS2 splice donor site mutation causing exon 2 skipping in the acid β-glucosidase mRNA. Am. J. hum. Genet. 51, 810–820 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Slightom, J.L., Blechi, A.E. & Smithies, O. Human fetal Gγ- and Aγ-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21, 627–638 (1980).

    Article  CAS  Google Scholar 

  15. Bentley, D.L. & Rabbitts, T.H. Evolution of immunoglobulinV genes: evidence indicating that recently duplicated human Vkappa; sequences have diverged by gene conversion. Cell 32, 181–189 (1983).

    Article  CAS  Google Scholar 

  16. Maeda, N. & Smithies, O. The evolution of multigene families: human haptoglobin genes. Ann. Rev. Genet. 20, 81–108 (1986).

    Article  CAS  Google Scholar 

  17. Braun, L., Schneider, P.M., Giles, C.M., Bertrams, J., & Rottner, C. Null alleles of complement C4. Evidence for pseudogenes at the C4 locus and for gene conversion at the C4B locus. J. exp. Med. 171, 129–140 (1990).

    Article  CAS  Google Scholar 

  18. Merritt, C.M., Easteal, S. & Board, P.G. Evolution of human α1-acid glycoprotein genes and surrounding Alu repeats. Genomics 6, 659–665 (1990).

    Article  CAS  Google Scholar 

  19. Kuhner, M.K., Lawlor, D.A., Ennis, P.D. & Parham, P. Gene conversion in the evolution of the human and chimpanzee MHC class I loci. Tissue Antigens 38, 152–164 (1991).

    Article  CAS  Google Scholar 

  20. Ehrlich, H.A. & Gyllenstein, U.B. Shared epitopes among HLA class II alleles: gene conversion, common ancestry and balancing selection. Immunol. Today 12, 412–414 (1991).

    Google Scholar 

  21. Taylor, J.B., Oliver, J., Sherrington, R. & Pemble, S.E. Structure of human glutathione S-transferase class Mu genes. Biochem J. 274, 587–593 (1991).

    Article  CAS  Google Scholar 

  22. Huang, C.-H., Kikuchi, M., McCreary, J. & Blumenfeld, O.O. Gene conversion confined to a direct repeat of the acceptor splice site generates allelic diversity at human glycophorin (GYP locus). J. biol. Chem. 267, 3336–3342 (1992).

    CAS  PubMed  Google Scholar 

  23. Deeb, S.S. et al. Genotpye-phenotype relationships in human red/green color-vision defects: molecular and psychophysical studies. Am. J. hum. Genet. 51, 687–700 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hanioka, N., Kimura, S., Meyer, U.A. & Gonzalez, F.J. The human CYP2D locus associated with a common genetic defect in drug oxidation: a G1934 P A base change in intron 3 of a mutant CYP2D6 allele results in an aberrant 3′ splice recognition site. Am. J. hum. Genet. 47, 994–1001 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Higashi, Y. et al. Effects of indivdual mutations in the P-450 (C21) activity and their distribution in the patient genomes of congenital steroid 21-hydroxylase deficiency. J. Biochem. 109, 638–644 (1991).

    Article  CAS  Google Scholar 

  26. Rodrigues, N.R. et al. Molecular characterization of the HLA-linked steroid 21 -hydroxylase B gene from an individual with congenital adrenal hyperplasia. EMBO J. 6, 1653–1661 (1987).

    Article  CAS  Google Scholar 

  27. Harada, F., Kimura, A., Iwanaga, T., Shimozawa, K., Yata, J. & Sasazuki, T. Gene conversion-like events cause steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia. Proc. natn. Acad. Sci. U.S.A. 84, 8091–8094 (1987).

    Article  CAS  Google Scholar 

  28. Higashi, Y., Tanae, A., Inoue, H., Hiromasa, T., Fujii-Kuriyama, Y. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P450(c21)] deficiency in humans. Proc. natn. Acad. Sci. U.S.A. 85, 7486–7490 (1988).

    Article  CAS  Google Scholar 

  29. Speiser, P.W., New, M.I. & White, P.C. Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14, DR1. New Engl J. Med. 319, 19–23 (1988).

    Article  CAS  Google Scholar 

  30. Globerman, H., Amor, M., Parker, K.L., New, M.I. & White, P.C. Nonsense mutation causing steroid 21-hydroxylase deficiency. J. clin. Invest. 82, 139–144.

    Article  CAS  Google Scholar 

  31. Tusie-Luna, M.-T., Speiser, P.W., Dumic, M., New, M.I. & White, P.C. A mutation (pro-30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Molec. Endochnol. 5, 685–692 (1991).

    Article  CAS  Google Scholar 

  32. Mornet, E. et al. Distribution of deletions and seven point mutations on CYP21B genes in three clinical forms of 21-hydroxylase deficiency. Am. J. hum. Genet. 48, 79–88 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Owerbach, D., Ballard, A.-L. & Draznin, M.B. Salt-wasting congenital adrenal hyperplasia: detection and characterization of mutations in the steroid 21-hydroxylase gene, CYP21, using the polymerase chain reaction. J. clin. endoc. Metab. 74, 553–558 (1992).

    CAS  Google Scholar 

  34. Geliebter, J. & Nathenson, S.G. Recombination and the concerted evolution of the murine MHC. Trends Genet. 3, 107–112 (1987).

    Article  CAS  Google Scholar 

  35. McCormack, W.T., Tjoelker, L.W. & Thompson, C.B. Avian B cell development: generation of an immunoglobulin repertoire by gene conversion. Ann. Rev. Immunol. 9, 219–241 (1991).

    Article  CAS  Google Scholar 

  36. Loh, D.Y. & Baltimore, D. Sexual preference of apparent gene conversion events in MHC genes of mice. Nature 309, 639–640 (1984).

    Article  CAS  Google Scholar 

  37. Krawinkel, U., Zoebelein, G. & Bothwell, A.L.M. Palindromic sequences are associated with sites of DNA breakage during gene conversion. Nucl. Acids Res. 14, 3871–3877 (1986).

    Article  CAS  Google Scholar 

  38. Thein, S.L. & Wallace, R.B. The use of synthetic oligonucleotides as specific hybridization probes in the diagnosis of genetic disorders. In Human Genetic Disease: A Practical Approach, (ed. Davies, K.E.) 33–50 (IRL Press, Oxford, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collier, S., Tassabehji, M. & Strachan, T. A de novo pathological point mutation at the 21–hydroxylase locus: implications for gene conversion in the human genome. Nat Genet 3, 260–265 (1993). https://doi.org/10.1038/ng0393-260

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0393-260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing