Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the founder of the MIP gene family underlie cataract development in the mouse

Abstract

The major intrinsic protein (MIP) of the vertebrate eye lens is the first identified member of a sequence-related family of cell-membrane proteins that appears to have evolved by gene duplication1. Several members of the MIP family transport water (aquaporins), glycerol and other small molecules in microbial, plant and animal cells2. Mutations in two aquaporin homologues of MIP underlie an autosomal recessive form of nephrogenic diabetes insipidus3 and absence of the Colton blood group antigens4 in humans, whereas, mutation of a third MIP-like gene underlies ‘big brain’ development in Drosophila5. Here we show that distinct mutations in the murine Mip gene underlie one form of autosomal dominant cataract in the mouse. The cataract Fraser mutation is a transposon-induced splicing error that substitutes a long terminal repeat sequence for the carboxy-terminus of MIP. The lens opacity mutation is an amino-acid substitution that inhibits targeting of MIP to the cell-membrane. These allelic cataract mutations provide the first direct evidence that MIP plays a crucial role in the development of a transparent eye lens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reizer, J., Reizer, A. & Saier, M.H. The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution and proposed functional differentiation of the two repeated halves of the proteins. Crit Rev. Biochem. Molec. Biol. 28, 235–257 (1993).

    Article  CAS  Google Scholar 

  2. Chrispeels, M.J. & Agre, P. Aquaporins: water channel proteins of plant and animal cells. Trends. Biochem. Sci. 19, 421–425 (1994).

    Article  CAS  Google Scholar 

  3. van Lieburg, A.F., et al. Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am. J. Hum. Genet. 55, 648–652 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Preston, G.M., Smith, B.L., Zeidel, M.L., Moulds, J.J. & Agre, P. Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science 265, 1585–1587 (1994).

    Article  CAS  Google Scholar 

  5. Rao, Y., Van, L.Y. & Jan, Y.N. Similarity of the product of the Drosophila neurogenic gene big brain to transmembrane channel proteins. Nature 345, 163–167 (1990).

    Article  CAS  Google Scholar 

  6. Fraser, F.C. & Schabtach, G. ‘Shirvelled’: a hereditary degeneration of the lens in the house mouse. Genet. Res. 3, 383–387 (1962).

    Article  Google Scholar 

  7. Muggleton-Harris, A.L., Festing, M.F.W. & Hall, M. A gene location for the inheritance of the Cataract Fraser (Catfr) mouse congenital cataract.Genet. Res. 49, 235–238 (1987).

    Article  CAS  Google Scholar 

  8. Lyon, M.F., Jarvis, S.E., Sayers, I. & Holmes, R.S. Lens opacity: a new gene for congenital cataract on chromosome 10 of the mouse. Genet. Res. 38, 337–341 (1981).

    Article  CAS  Google Scholar 

  9. Muggleton-Harris, A.L. & Higbee, N. An in vivo and in vitro study of the embryonic and adult Lop mutant congenital cataractous lens. Exp. Eye Res. 44, 805–815 (1987).

    Article  CAS  Google Scholar 

  10. Yancey, S.B., Koh, K., Chung, J. & J-R Expression of the gene for main intrinsic polypeptide (MIP): separate spatial distributions of MIP and γ-crystallin gene transcripts in rat lens development. J. Cell Biol. 106, 705–714 (1988).

    Article  CAS  Google Scholar 

  11. Griffin, C.S. & Shiels, A. Localisation of the gene for the major intrinsic protein of eye-lens fibre cell membranes to mouse chromosome 10 by in situ hybridisation. Cytogenet Cell Genet. 59, 300–302 (1992).

    Article  CAS  Google Scholar 

  12. Breen, M. et al. Towards high resolution maps of the mouse and human genomes - a facility for ordering markers to 0.1 cM resolution. Hum. Mol. Genet. 3, 621–627 (1994).

    Article  CAS  Google Scholar 

  13. Shiels, A. & Griffin, C.S. Aberrant expression of the gene for lens major intrinsic protein in the CAT mouse. Curr. Eye Res. 12, 913–921 (1993).

    Article  CAS  Google Scholar 

  14. Pisano, M.M. & Chepelinsky, A.B. Genomic cloning, complete nucleotide sequence and structure of the human gene encoding the major intrinsic protein (MIP) of the lens. Genomics 11, 981–990 (1991).

    Article  CAS  Google Scholar 

  15. Kaghad, M., Maillet, L. & Brulet, P. Retroviral characteristics of the long terminal repeat of murine E.Tn sequences. EMBOJ. 4, 2911–2915 (1985).

    Article  CAS  Google Scholar 

  16. Shiels, A., Griffin, C.S. & Muggleton-Harris, A.L. Restriction fragment length polymorphisms associated with the gene for the major intrinsic protein of eye-lens fibre cell membranes in mice with hereditary cataracts. Btochim. Biophys. Acta. 1097, 81–85 (1991).

    Article  CAS  Google Scholar 

  17. Shiels, A., Griffin, C.S. & Muggleton-Harris, A.L. Immunochemical comparison of the major intrinsic protein of eye-lens fibre cell membranes in mice with hereditary cataracts. Biochim. Biophys. Acta. 1097, 318–324 (1991).

    Article  CAS  Google Scholar 

  18. Vaux, D., Tooze, J. & Fuller, S. Identification by anti-idiotype antibodies of an intracellular membrane protein that recognises a mammalian endoplasmic reticulum retention signal. Nature 345, 495–502 (1990).

    Article  CAS  Google Scholar 

  19. Mulders, S.M. et al. Water channel properties of major intrinsic protein (MIP) of lens. J. Biol. Chem. 270, 9010–9016 (1995).

    Article  CAS  Google Scholar 

  20. Kushmerick, C., Rice, S.J., Baldo, G.J., Haspel, H.C. & Mathias, R.T., Ion, water and neutral solute transport in Xenopus oocytes expressing frog lens MIP. Exp. Eye Res. 61, 351–362 (1995).

    Article  CAS  Google Scholar 

  21. Zampighi, G.A., Simon, S.A. & Hall, J.E. The specialised junctions of the lens. Int. Rev. Cytol. 136, 185–225 (1992).

    Article  CAS  Google Scholar 

  22. Michea, L.F., Andrinolo, D., Ceppi, H. & Lagos, N. Biochemical evidence for adhesion-promoting role of major intrinsic protein isolated from both normal and cataractous human lenses. Exp. Eye Res. 61, 293–301.

    Article  CAS  Google Scholar 

  23. Brakenhoff, R.H., Henskens, H.A.M. ., van Rossum, M.W.P.C., Lubsen, N.H., & Schoenmakers, J. G. G., Activation of the γE-crystallin pseudogene in the human hereditary Coppock-like cataract. Hum. Mol. Genet. 3, 279–283 (1994).

    Article  CAS  Google Scholar 

  24. Chambers, C. & Russell, P. Deletion mutation in an eye lens β-crystallin. J. Biol. Chem. 266, 6742–6746 (1991).

    CAS  Google Scholar 

  25. Cartier, M., Breitman, M.L. & Tsui, L.-C. A frameshift mutation in the γE-crystallin gene of the Elo mouse.Nature Genet. 2, 42–45 (1992).

    Article  CAS  Google Scholar 

  26. Rodriguez, I.R., Gonzalez, P., Zigler, J.S. & Borras, T. A guinea-pig hereditary cataract contains a splice-site deletion in a crystallin gene. Biochim. Biophys. Acta. 1180, 44–52 (1992).

    Article  CAS  Google Scholar 

  27. Muggleton-Harris, A.L., Hardy, K. & Higbee, N. Rescue of lens developmental abnormalities in chimeras of non-cataractous and congenital cataractous mice. Development. 99, 473–480 (1987).

    CAS  PubMed  Google Scholar 

  28. Kent, N.A. & Shiels, A. Nucleotide and derived amino acid sequence of the major intrinsic protein of rat eye lens. Nucl. Acids Res. 18, 4256 (1990).

    Article  CAS  Google Scholar 

  29. Bassnett, S. The fate of the golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation. Invest. Ophthalmol. Vis. Sci. 36, 1793–1803 (1995).

    CAS  PubMed  Google Scholar 

  30. Griffin, C.S. & Shiels, A. In situ hybridisation localises the gene for the major intrinsic protein of eye lens fibre cell membranes to human chromosome 12q14. Cytogenet. Cell Genet. 61, 8–9 (1992).

    Article  CAS  Google Scholar 

  31. Saito, F. et al. Human AQP2 and MIP genes, two members of the MIP family, map within chromosome band 12q13 on the basis of two color FISH. Cytogenet. Cell Genet. 68, 45–48 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiels, A., Bassnett, S. Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat Genet 12, 212–215 (1996). https://doi.org/10.1038/ng0296-212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0296-212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing